估计阅读时长: < 1 分钟 Order by Date Name Attachments HEStainModelPreviews • 361 kB • 32 click 03.06.202213546516212177 • 152 kB […]
Figure 6 scTDA analysis of mouse and human developmental data sets.
估计阅读时长: 9 分钟 单细胞分析方法学习文献打卡记录: 【单细胞组学】PhenoGraph单细胞分型 【单细胞分析方法】VeTra:基于RNA速度的轨迹推断工具 【单细胞分析方法】单细胞图嵌入 Order by Date Name Attachments Cellular populations during motor neuron differentiation • […]
Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo
估计阅读时长: 4 分钟 Assembles a manifold that is defined through a series of overlapping, locally-defined PCA subspaces. Non-mutual k-nearest-neighborhoods […]
VeTra: a tool for trajectory inference based on RNA velocity
估计阅读时长: 4 分钟 单细胞轨迹可以揭示基因调控如何控制细胞命运:大多数细胞状态转变,无论是在发育,重编程或者是疾病异常状态,都以基因表达变化的级联为特征。 Order by Date Name Attachments vec • 722 kB • 55 click 17.03.2022Slide10 • 14 […]
估计阅读时长: 9 分钟 https://gcmodeller.org 在这篇博客文章之中,我主要是来详细介绍一下是如何从头开始实现Phenograph单细胞分型算法的。在之前的一篇博客文章《【单细胞组学】PhenoGraph单细胞分型》之中,我们介绍了Phenograph算法的简单原理,以及一个在R语言之中所实现的Phenograph算法的程序包Rphenograph。在这里我主要是详细介绍在GCModeller软件之中所实现的VisualBasic语言版本的Phenograph单细胞分型算法。 Attachments Rphenograph • 236 kB • 59 click 20.09.2021
Automated Optimal Parameters for T-Distributed Stochastic Neighbor Embedding Improve Visualization and Allow Analysis of Large Datasets
估计阅读时长: 7 分钟 PhenoGraph提供了与UMAP类似的算法过程进行单细胞组学数据的细胞分型处理操作。与UMAP方法相比,PhenoGraph并不会产生数据降维效果,仅仅产生数据点Cluster信息。如果需要将数据进行可视化,还需要借助于t-SNE算法将PhenoGraph的分型结果数据投影到一个二维平面上完成。 Order by Date Name Attachments mmc8 • 10 MB • 103 click 22.09.2021Data-Driven Phenotypic Dissection […]