估计阅读时长: 9 分钟 https://gcmodeller.org 在这篇博客文章之中,我主要是来详细介绍一下是如何从头开始实现Phenograph单细胞分型算法的。在之前的一篇博客文章《【单细胞组学】PhenoGraph单细胞分型》之中,我们介绍了Phenograph算法的简单原理,以及一个在R语言之中所实现的Phenograph算法的程序包Rphenograph。在这里我主要是详细介绍在GCModeller软件之中所实现的VisualBasic语言版本的Phenograph单细胞分型算法。 Attachments Rphenograph • 236 kB • 101 click 20.09.2021
估计阅读时长: 11 分钟 https://github.com/xieguigang/sciBASIC/tree/master/gr/Microsoft.VisualBasic.Imaging/Drawing3D 因为大家大多数都是从小接受电子游戏,所以长大了之后能够自己从零开始开发一个完整的3维图形引擎是每一个男程序员的梦想。这个就像玩机械的男人的梦想就是自己从头开始组装一辆汽车。还好这个梦想我在几年前就已经实现了。 Order by Date Name Attachments Cube3D_VB.NET • 4 MB • 119 click 19.09.2021Cube_screenshot • […]
估计阅读时长: 4 分钟 之前在阅读一个使用rust语言编写的contour tracing算法模块的源代码的时候,其中有一个向量的左旋以及右旋的操作。这个操作的具体的含义是和在算法中的轮廓边缘像素的读取方向有关:因为访问方向是一个二维平面的概念,但是在代码中我们只能够使用一个一维的数组的来存储这个二维的信息。所以在这段rust代码之中,作者很巧妙的使用了向量的左旋以及右旋操作来实现一维数组中对二维平面上的方位的访问操作。 Order by Date Name Attachments RotateVector • 30 kB • 109 click 16.09.2021Full • […]
HR2MSI mouse urinary bladder S096 - spatial regions
估计阅读时长: 7 分钟 https://github.com/xieguigang/sciBASIC 最近在研究实现空间代谢组学中的一些特征区域的自动化划分分割。在得到了特征点集合之后,我们需要根据一些图像处理算法进行特征区域的提取操作。之前,我们尝试过基于绘制等高线图Marching Squares算法的方式来将特征点集合自动转换为特征区域的多边形,实现轮廓扫描获取的功能。但是实现的效果嘛,和实际的区域存在着一些较大的差异。 Order by Date Name Attachments HR2MSI mouse urinary bladder S096 - spatial regions […]
pxocgx01_blastx against multiple related xanthomonas species
估计阅读时长: 5 分钟 https://gcmodeller.org/ KEGG is a database resource for understanding high-level functions and utilities of the biological system, […]
估计阅读时长: 10 分钟 https://github.com/xieguigang/sciBASIC 最近在空间代谢组学中的质谱成像应用开发过程中,会需要使用到一些图像处理算法对原始的质谱成像结果图片进行诸如平滑,放大等处理。顺着图像平滑的算法搜索,通过搜索引擎找到了一个年代比较久远的图像处理算法博客文章,将其中的图像算法重新实现了一下,在这里分享给大家。 Order by Date Name Attachments lena • 558 kB • 108 click 10.09.2021lenalena • […]
Electron micrographs of Synechococcus
估计阅读时长: 7 分钟 https://gcmodeller.org/ 流平衡分析(flux balance analysis)是一种可以用来构建和模拟分析基因组级别的代谢网络的数学方法。流平衡分析是系统生物学(system biology)的一个重要的分析手段。不同于以湿实验的代谢通量分析(metabolic flux analysis, MFA),FBA是用数学方法对代谢网络里的代谢流进行拟合分析。 Order by Date Name Attachments Electron micrographs of […]
估计阅读时长: 6 分钟 https://github.com/xieguigang/sciBASIC 在实际应用的机器学习方法里,GradientTree Boosting (GBDT)是一个在很多应用里都很出彩的技术。XGBoost是一套提升树可扩展的机器学习系统。XGBoost全名叫(eXtreme Gradient Boosting)极端梯度提升。它是大规模并行boosted tree的工具,XGBoost 所应用的算法就是 GBDT(gradient boosting decision tree)的改进,既可以用于分类也可以用于回归问题中。 Order by Date Name […]
博客文章
September 2021
S M T W T F S
 1234
567891011
12131415161718
19202122232425
2627282930  
  1. […] 在上面所提到的线性变化转换过程,其实就是一个热图绘制的过程。我们一般按照不同的颜色谱做线性变换映射,就可以得到对应的不同颜色系列下的NRRD热图成像渲染结果。对于NRRD图像文件的热图成像渲染原理,其实是和质谱成像的渲染原理一摸一样的(对于质谱成像渲染而言,其主要的原理也就是将对应的扫描点上的目标离子的intensity值取出,构建出一个和NRRD文件中的光栅矩阵数据一摸一样的矩阵数据,基于这个矩阵数据进行线性变换映射到对应的颜色值完成热图成像可视化操作)。 […]

  2. […] 如果我们需要将得到光栅矩阵数据进行可视化,该怎样做呢?其实,如果我们了解过热图成像或者质谱成像的原理的话,实际上对于这个光栅矩阵的原始数据进行成像的原理应该就会很清楚了。在我们拿到这个矩阵之后,可以将矩阵的行和列看作为二维图像空间之中的x和y坐标信息,然后对应的矩阵中的单元格值可以映射为一个对应的颜色,即可将从NRRD文件之中拿到的光栅矩阵数据给可视化出来。将光栅矩阵中的数值映射为对应的颜色值的方法原理,大家可以参考一下《【热图数据可视化】颜色插值计算原理》的内容介绍,一摸一样。 […]