Abdelmoula, W.M., Lopez, B.GC., Randall, E.C. et al. Peak learning of mass spectrometry imaging data using artificial neural networks. Nat Commun 12, 5544 (2021). https://doi.org/10.1038/s41467-021-25744-8
估计阅读时长: 4 分钟 基于UMAP工具进行简单的自动化组织分区操作 在这里我们假设已经可以正常的将空间代谢数据导入至MZKit工作站软件之中。假若需要借助于MZKit工作站软件进行切片组织样本的自动化分区操作,相关的功能可以在【MSI Analysis】菜单栏中寻找到。在这里我们打开【Show Map Layer】按钮,选择【UMAP and clustering】功能。 基于降维的组织自动化分区原理 因为降维操作一般是一种特征提取操作,所以经过降维之后,在高维度空间上无法显现的特征,在低维度会呈现出来。在高维度空间散落的相近的数据点,在经过特征提取之后,低维度上会产生相似的特征信息,相互聚集在一簇。这样子我们就可以在低维度空间上通过一些聚类算法讲这些特征进行聚类,最后将聚类特征结果标记到各个散点上的对应的原始成像空间上,我们就可以看见组织分区的结果了。 Abdelmoula, W.M., Lopez, B.GC., Randall, E.C. et […]
Figure 6 scTDA analysis of mouse and human developmental data sets.
估计阅读时长: 14 分钟 单细胞分析方法学习文献打卡记录: 【单细胞组学】PhenoGraph单细胞分型 【单细胞分析方法】VeTra:基于RNA速度的轨迹推断工具 【单细胞分析方法】单细胞图嵌入 Order by Date Name Attachments Cellular populations during motor neuron differentiation • […]
Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo
估计阅读时长: 7 分钟 Assembles a manifold that is defined through a series of overlapping, locally-defined PCA subspaces. Non-mutual k-nearest-neighborhoods […]
VeTra: a tool for trajectory inference based on RNA velocity
估计阅读时长: 5 分钟 单细胞轨迹可以揭示基因调控如何控制细胞命运:大多数细胞状态转变,无论是在发育,重编程或者是疾病异常状态,都以基因表达变化的级联为特征。 Order by Date Name Attachments vec • 722 kB • 199 click 17.03.2022Slide10 • 14 […]
估计阅读时长: 15 分钟 https://gcmodeller.org 在这篇博客文章之中,我主要是来详细介绍一下是如何从头开始实现Phenograph单细胞分型算法的。在之前的一篇博客文章《【单细胞组学】PhenoGraph单细胞分型》之中,我们介绍了Phenograph算法的简单原理,以及一个在R语言之中所实现的Phenograph算法的程序包Rphenograph。在这里我主要是详细介绍在GCModeller软件之中所实现的VisualBasic语言版本的Phenograph单细胞分型算法。 Attachments Rphenograph • 236 kB • 147 click 20.09.2021
Automated Optimal Parameters for T-Distributed Stochastic Neighbor Embedding Improve Visualization and Allow Analysis of Large Datasets
估计阅读时长: 11 分钟 PhenoGraph提供了与UMAP类似的算法过程进行单细胞组学数据的细胞分型处理操作。与UMAP方法相比,PhenoGraph并不会产生数据降维效果,仅仅产生数据点Cluster信息。如果需要将数据进行可视化,还需要借助于t-SNE算法将PhenoGraph的分型结果数据投影到一个二维平面上完成。 Order by Date Name Attachments Phenograph-image4 • 200 kB • 176 click 09.08.2021Automated Optimal Parameters […]
博客文章
May 2024
S M T W T F S
 1234
567891011
12131415161718
19202122232425
262728293031  
  1. 针对图对象进行向量化表示嵌入: 首先,通过node2vec方法,将node表示为向量 第二步,针对node向量矩阵,进行umap降维计算,对node进行排序,生成node排序序列 第三步,针对node排序序列进行SGT序列图嵌入,实现将网络图对象嵌入为一维向量