Figure 3. MetaMapp of the metabolic modules that were altered in E. coli grown in galactose.
估计阅读时长: 3 分钟 在工作之中可能会遇到需要进行两个网络图对象之间的相似度计算的情形:例如在质谱数据分析的化学信息学计算工作之中,我们在解析SMILES字符串得到分子图之后,可以基于图相似度比较计算方法来比较计算两个代谢物分子图之间的结构上的相似度。 Attachments pone.0078360.g003 • 2 MB • 70 click 06.08.2022https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0078360
估计阅读时长: 5 分钟 https://github.com/rsharp-lang/ggplot 在进行复杂关系的数据集进行可视化的时候,通过网络图的方式进行数据可视化可以让我们非常直观的借助于网络节点的聚集程度之类的布局信息了解到我们的复杂数据的关系结构信息。最近将R#语言之中的ggplot包进行网络可视化的代码库进行了一些更新。基于此功能更新工作,目前在ggplot程序包之中成功集成了ggraph程序包类似的网络可视化功能。在这里做了一些总结分享给大家。 Order by Date Name Attachments enrichNetwork_ggraph • 70 kB • 79 click 01.06.2022enrichNetwork_ggraph2 • […]
估计阅读时长: 4 分钟 访问在线服务: http://metdna.zhulab.cn/ Metabolite identification is the long-standing challenge for liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomics. Here, […]
Figure 6 scTDA analysis of mouse and human developmental data sets.
估计阅读时长: 9 分钟 单细胞分析方法学习文献打卡记录: 【单细胞组学】PhenoGraph单细胞分型 【单细胞分析方法】VeTra:基于RNA速度的轨迹推断工具 【单细胞分析方法】单细胞图嵌入 Order by Date Name Attachments Cellular populations during motor neuron differentiation • […]
Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo
估计阅读时长: 4 分钟 Assembles a manifold that is defined through a series of overlapping, locally-defined PCA subspaces. Non-mutual k-nearest-neighborhoods […]
估计阅读时长: 3 分钟 https://github.com/xieguigang/graphQL 构建一个图数据库,可以用来帮我们解决复杂的知识关联计算问题。例如我们想要程序向我们回答dihydrogen oxide与water是否是同一个东西。如果光从字符串比较角度上面来看待这个问题的话,很显然,二者的字符串比较结果肯定是False。面对上面的这个问题,图数据库则可以很简单的向我们回答道上面的两个字符串都是指代的同一个东西。 Order by Date Name Attachments tumblr_inline_mqvdlydGCp1qz4rgp • 124 kB • 95 click 05.03.2022Capture […]
估计阅读时长: 9 分钟 https://gcmodeller.org 在这篇博客文章之中,我主要是来详细介绍一下是如何从头开始实现Phenograph单细胞分型算法的。在之前的一篇博客文章《【单细胞组学】PhenoGraph单细胞分型》之中,我们介绍了Phenograph算法的简单原理,以及一个在R语言之中所实现的Phenograph算法的程序包Rphenograph。在这里我主要是详细介绍在GCModeller软件之中所实现的VisualBasic语言版本的Phenograph单细胞分型算法。 Attachments Rphenograph • 236 kB • 101 click 20.09.2021
估计阅读时长: 9 分钟 https://github.com/xieguigang/sciBASIC 层次聚类通过计算不同类别数据点间的相似度来创建一棵有层次的嵌套聚类树。基于层次聚类分析,我们可以初步可视化我们的一些原始数据: 例如对样本的层次聚类分类,可以让我们了解到样本在分组之间以及分组内的异质性。 对生物序列进行基于相似度的层次聚类分析,我们可以了解到序列之间的相似性程度或者进化关系 Order by Date Name Attachments metabolome • 14 kB • 115 click […]
Visual a KDtree
估计阅读时长: 5 分钟 https://github.com/xieguigang/sciBASIC 在进行无监督聚类分析的方法之中,我们在算法代码之中一般会遇到求解与某一个样本数据点最相似的数据点的计算过程。对于这个计算过程,一般而言我们是基于欧几里得距离来完成的。 Order by Date Name Attachments Visual a KDtree Search • 274 kB • 136 […]
Metavirome network
估计阅读时长: 7 分钟 https://github.com/xieguigang/sciBASIC Louvain算法是基于模块度的网络节点集群发现算法。该算法在效率和效果上都表现较好,并且能够发现层次性的网络节点集群结构,其优化目标是最大化整个网络集群模块的模块度(Modularity)。 Order by Date Name Attachments graph • 2 MB • 112 click 07.08.2021Metavirome network […]
博客文章
May 2023
S M T W T F S
 123456
78910111213
14151617181920
21222324252627
28293031  
  1. […] 在上面所提到的线性变化转换过程,其实就是一个热图绘制的过程。我们一般按照不同的颜色谱做线性变换映射,就可以得到对应的不同颜色系列下的NRRD热图成像渲染结果。对于NRRD图像文件的热图成像渲染原理,其实是和质谱成像的渲染原理一摸一样的(对于质谱成像渲染而言,其主要的原理也就是将对应的扫描点上的目标离子的intensity值取出,构建出一个和NRRD文件中的光栅矩阵数据一摸一样的矩阵数据,基于这个矩阵数据进行线性变换映射到对应的颜色值完成热图成像可视化操作)。 […]

  2. […] 如果我们需要将得到光栅矩阵数据进行可视化,该怎样做呢?其实,如果我们了解过热图成像或者质谱成像的原理的话,实际上对于这个光栅矩阵的原始数据进行成像的原理应该就会很清楚了。在我们拿到这个矩阵之后,可以将矩阵的行和列看作为二维图像空间之中的x和y坐标信息,然后对应的矩阵中的单元格值可以映射为一个对应的颜色,即可将从NRRD文件之中拿到的光栅矩阵数据给可视化出来。将光栅矩阵中的数值映射为对应的颜色值的方法原理,大家可以参考一下《【热图数据可视化】颜色插值计算原理》的内容介绍,一摸一样。 […]