估计阅读时长: 11 分钟 给定一组n个字符串数组,找到包含给定集合中每个字符串的最小字符串作为子字符串。我们可以假设这个字符串数组中没有字符串是另一个字符串的子字符串。那么基于上面的描述,我们就可以得到下面所示的问题求解目标: let arr[] = ["catg", "ctaagt", "gcta", "ttca", "atgcatc"] // output: gctaagttcatgcatc 上面的问题描述实际上是一个最短超字符串问题(shortest common superstring) Order […]
估计阅读时长: 7 分钟 一般而言,进行全基因组的转录表达调控网络的建立,我们需要基于两个数据结果来完成: 目标基因的转录调控位点信息(Motif搜索结果,构成网络之中的节点) 转录调控位点相应的转录调控因子(Motif位点相关的转录调控因子,构成网络之中的边连接) Order by Date Name Attachments Xor • 271 kB • 189 click 11.06.2022An […]
估计阅读时长: 12 分钟 Motif是一段典型的序列或者一个结构。一般情况下是指构成任何一种特征序列的基本结构。通俗来讲,即是有特征的短序列,一般认为它是拥有生物学功能的保守序列,可能包含特异性的结合位点,或者是涉及某一个特定生物学过程的有共性的序列区段。比如蛋白质的序列特异性结合位点,如核酸酶和转录因子。 Order by Date Name Attachments Smith-Waterman-Algorithm-Example-Step3 • 8 kB • 175 click 07.06.2022motifPilesHeatmap-1 • 227 […]
估计阅读时长: < 1 分钟 Order by Date Name Attachments HEStainModelPreviews • 361 kB • 157 click 03.06.202213546516212177 • 152 kB […]
估计阅读时长: 7 分钟 假设现在存在有这样子的一个人群等位基因统计结果信息表格: Populations AA Aa aa Subpopulation 1 125 250 125 Subpopulation 2 50 30 20 Subpopulation […]
Figure 6 scTDA analysis of mouse and human developmental data sets.
估计阅读时长: 14 分钟 单细胞分析方法学习文献打卡记录: 【单细胞组学】PhenoGraph单细胞分型 【单细胞分析方法】VeTra:基于RNA速度的轨迹推断工具 【单细胞分析方法】单细胞图嵌入 Order by Date Name Attachments Cellular populations during motor neuron differentiation • […]
Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo
估计阅读时长: 7 分钟 Assembles a manifold that is defined through a series of overlapping, locally-defined PCA subspaces. Non-mutual k-nearest-neighborhoods […]
VeTra: a tool for trajectory inference based on RNA velocity
估计阅读时长: 5 分钟 单细胞轨迹可以揭示基因调控如何控制细胞命运:大多数细胞状态转变,无论是在发育,重编程或者是疾病异常状态,都以基因表达变化的级联为特征。 Order by Date Name Attachments vec • 722 kB • 245 click 17.03.2022Slide10 • 14 […]
估计阅读时长: 17 分钟 https://github.com/rsharp-lang/ggplot 接上一篇博客文章中谈到,我们已经通过R#语言之中的ggplot程序包绘制出了一个可以使用的火山图。在这里,我们将会通过在火山图上添加更多的可视化元素来为大家介绍R#语言之中的ggplot程序包的进阶使用方式。 Order by Date Name Attachments volcano • 651 kB • 231 click 09.10.2021volcano • […]
估计阅读时长: 11 分钟 https://github.com/rsharp-lang/ggplot 在生物信息学中的组学数据分析领域内,有一个非常常见的数据可视化图表:应用于可视化两两组别比对结果的火山图。在火山图之中,X坐标轴一般是log2FC,纵坐标Y轴,则一般是t检验的pvalue的-log10转换之后的值。由于fold change有大于1的值,A/B大于1,表示A的表达量高于B的表达量,反之小于一表示A的表达量低于B的表达量。这样子fold change经过log2转换之后,就会出现负数,散点一般呈轴对称分布在X=0的位置周围。这样子绘制出来的散点图就有点类似于火山喷发的样子了。 Order by Date Name Attachments a679af1eb9ffbfbad48c18d563ea51f3 • 45 kB • 271 click […]
博客文章
October 2024
S M T W T F S
 12345
6789101112
13141516171819
20212223242526
2728293031  
  1. 在mysql之中,针对24小时内的数据按照半个小时进行一次统计数量: ```sql SELECT DATE_FORMAT(FROM_UNIXTIME(FLOOR(UNIX_TIMESTAMP(add_time) / 1800) * 1800), '%Y-%m-%d %H:%i') AS half_hour, COUNT(*) AS count FROM user_track.page_view WHERE add_time >=…

  2. 针对图对象进行向量化表示嵌入: 首先,通过node2vec方法,将node表示为向量 第二步,针对node向量矩阵,进行umap降维计算,对node进行排序,生成node排序序列 第三步,针对node排序序列进行SGT序列图嵌入,实现将网络图对象嵌入为一维向量