估计阅读时长: 14 分钟 一般而言,如果我们在进行组学数据分析的时候,如果想要比较两组数据之间是否存在有差异性,一般是对两两比较的两组数据进行T-检验。但是在代谢组学数据分析领域内,则很多的组学数据分析情况为比较两组以上的数据,寻找差异的biomarker。那这个时候就需要使用上ANOVA统计检验方法了。 Order by Date Name Attachments anova • 105 kB • 337 click 28.05.2022ANOVA-screen • 27 […]
估计阅读时长: 7 分钟 假设现在存在有这样子的一个人群等位基因统计结果信息表格: Populations AA Aa aa Subpopulation 1 125 250 125 Subpopulation 2 50 30 20 Subpopulation […]
估计阅读时长: 6 分钟 访问在线服务: http://metdna.zhulab.cn/ Metabolite identification is the long-standing challenge for liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomics. Here, […]
估计阅读时长: 17 分钟 脂质的分类 LipidMAPS是美国国立卫生院推进的“脂质代谢途径研究计划”,涵盖目前最权威的脂类分类、命名法和结构信息,还囊括了众多的脂质组定性定量方法。此外,它还提供了一些生物信息学分析工具,比如基于质谱的脂质定性工具,通过给定特定的m/z,或特征子离子信息,或二级谱图信息,可以预测可能的脂质分子;又比如可以管理、可视化及编辑脂质信号通路等。 Order by Date Name Attachments gr1_lrg • 379 kB • 213 click 30.04.2022MS-based lipidomics […]
Figure 6 scTDA analysis of mouse and human developmental data sets.
估计阅读时长: 14 分钟 单细胞分析方法学习文献打卡记录: 【单细胞组学】PhenoGraph单细胞分型 【单细胞分析方法】VeTra:基于RNA速度的轨迹推断工具 【单细胞分析方法】单细胞图嵌入 Order by Date Name Attachments Cellular populations during motor neuron differentiation • […]
估计阅读时长: 8 分钟 在之前的BioDeep代谢物数据库整合工作之中,所提取的代谢物注释信息的唯一编码是来自于数据库表之中的递增主键。由于数据库之中的递增主键的唯一编码值是与数据内容完全无关的数据,所以在基于图数据库做数据库整合的结果在两次整合操作之后,可能会因为先后输出顺序不一致的原因,得到的在关系型数据库中的唯一递增编号可能会完全不一样了。这个问题会对数据库更新操作造成非常大的困扰。 Order by Date Name Attachments 450px-Hash_table_5_0_1_1_1_1_1_LL • 26 kB • 188 click 16.04.2022metadata-table • 58 […]
Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo
估计阅读时长: 7 分钟 Assembles a manifold that is defined through a series of overlapping, locally-defined PCA subspaces. Non-mutual k-nearest-neighborhoods […]
估计阅读时长: 5 分钟 目前我们根据质谱数据进行代谢物ROI注释分析,很大一部分的工作是建立在已经可以被纯化的化合物的纯标准品所建立的标准品库数据的比对操作之上的。但是依赖于质谱参考谱图数据库所完成的代谢物注释分析,也仅能够得到很小的一部分结果,因为能够纯化或者合成的化合物在整个自然界中目前只占比较小的一部分。并且购买标准品也会需要耗费大量的实验室资金预算。 Order by Date Name Attachments The-Periodic-Table • 2 MB • 237 click 20.03.2022Leucine[M+H]+ • 33 […]
VeTra: a tool for trajectory inference based on RNA velocity
估计阅读时长: 5 分钟 单细胞轨迹可以揭示基因调控如何控制细胞命运:大多数细胞状态转变,无论是在发育,重编程或者是疾病异常状态,都以基因表达变化的级联为特征。 Order by Date Name Attachments vec • 722 kB • 245 click 17.03.2022Slide10 • 14 […]
估计阅读时长: 5 分钟 https://github.com/xieguigang/graphQL 构建一个图数据库,可以用来帮我们解决复杂的知识关联计算问题。例如我们想要程序向我们回答dihydrogen oxide与water是否是同一个东西。如果光从字符串比较角度上面来看待这个问题的话,很显然,二者的字符串比较结果肯定是False。面对上面的这个问题,图数据库则可以很简单的向我们回答道上面的两个字符串都是指代的同一个东西。 Order by Date Name Attachments tumblr_inline_mqvdlydGCp1qz4rgp • 124 kB • 178 click 05.03.2022Capture […]
博客文章
October 2024
S M T W T F S
 12345
6789101112
13141516171819
20212223242526
2728293031  
  1. 在mysql之中,针对24小时内的数据按照半个小时进行一次统计数量: ```sql SELECT DATE_FORMAT(FROM_UNIXTIME(FLOOR(UNIX_TIMESTAMP(add_time) / 1800) * 1800), '%Y-%m-%d %H:%i') AS half_hour, COUNT(*) AS count FROM user_track.page_view WHERE add_time >=…

  2. 针对图对象进行向量化表示嵌入: 首先,通过node2vec方法,将node表示为向量 第二步,针对node向量矩阵,进行umap降维计算,对node进行排序,生成node排序序列 第三步,针对node排序序列进行SGT序列图嵌入,实现将网络图对象嵌入为一维向量