估计阅读时长: 11 分钟

https://github.com/xieguigang/ms-imaging

Mass spectrometry imaging ( MSI) is a technique used in mass spectrometry to visualize the spatial distribution of molecules, as biomarkers, metabolites, peptides or proteins by their molecular masses. After collecting a mass spectrum at one spot, the sample is moved to reach another region, and so on, until the entire sample is scanned.

在之前的博客文章之中,我们介绍了怎样通过使用mzkit的桌面端软件进行质谱成像的原始数据的查看操作:《【Mzkit教程】查看质谱成像原始文件》。通过基于图形界面的桌面应用程序,我们可以很方便的低门槛的进行原始数据查看。但是桌面端图形化界面存在一个缺点就是:图形界面的应用程序一般在个性化定制上存在难点,并且进行批量化的自动处理会比较困难。

在最近的一段时间为R#脚本语言开发了一个模仿R环境之中的ggplot2程序包的数据可视化程序包模块。实现了一些基本的原始数据可视化功能。在这里我为ggplot程序包进行了一些更加深度的拓展开发,专门开发出来了一个应用于质谱成像的ggplot拓展程序包。因为最近在编写质谱成像的分析流程脚本。这个ggplot的质谱成像拓展程序包刚好很好的解决了自动化处理质谱成像数据可视化的批处理的问题。我将会在这篇文章中为大家讲解这个ggplot的拓展程序包的具体实现原理。

ggplot加载质谱成像原始数据

对于通过使用ggplot程序包进行数据可视化作图,我们一般是通过一个dataframe对象来作为数据源。但是对于质谱成像而言,一般可以通过mzpack原始数据文件来作为数据来源。为了能够让ggplot程序包读取mzpack原始数据文件,我们需要通过aes函数进行数据驱动程序的手动加载。

下面的一段代码展示了如何通过aes函数手动指定数据源的驱动程序的加载操作的:

aes(driver = MSImaging())

在底层的VisualBasic代码之中,会存在有一个名称为MSImaging的函数进行质谱成像原始数据文件驱动程序的创建:

''' <summary>
''' create a MSI data reader.
''' </summary>
''' <returns></returns>
<ExportAPI("MSImaging")>
Public Function MSIReader() As ggplotReader
    Return New MSIReader
End Function

通过上面的函数所创建的质谱成像原始数据驱动程序,会将传递进来的数据对象直接强行转换为mzpack文件对象,然后基于质谱成像的像素范围创建坐标轴的原始数据,以及创建一个来自于mzkit的核心库文件中的质谱成像原始数据的读取模块。

Public Class MSIReader : Inherits ggplotReader

    Public ReadOnly Property reader As PixelReader

    ''' <summary>
    ''' returns the dimensions of the MSI raw data
    ''' </summary>
    ''' <param name="data"></param>
    ''' <param name="env"></param>
    ''' <returns></returns>
    Public Overrides Function getMapData(data As Object, env As Environment) As ggplotData
        Dim raw As mzPack = DirectCast(data, mzPack)
        Dim points = raw.MS.Select(Function(scan) scan.GetMSIPixel).ToArray
        Dim x As Double() = points.Select(Function(p) CDbl(p.X)).ToArray
        Dim y As Double() = points.Select(Function(p) CDbl(p.Y)).ToArray

        _reader = New ReadRawPack(mzpack:=raw)

        Return New ggplotData With {
            .x = x,
            .y = y
        }
    End Function
End Class

因为MSIReader对象继承自ggplotReader数据读取模块对象,所以基于这个继承关系,我们可以将质谱成像的原始数据读取模块插入到ggplot的内部核心之中,可以让ggplot程序包模块具备有读取质谱成像mzpack原始数据文件的能力。

单分子质谱成像可视化

基于ggplot程序包进行单分子的质谱成像可视化主要是通过geom_msimaging函数来完成的。这个函数有一个必须参数:通过mz参数进行目标离子的设定。在通过geom_msimaging函数设定目标离子对象之后,剩下的操作和使用ggplot进行普通图表的绘制操作过程是一样的了,剩余的操作部分与绘制其他的基础图表相比没有任何变化。

require(MSImaging);
require(mzkit);
require(ggplot);

options(memory.load = "max");

bitmap(file = `${@dir}/HR2MSI_mouse_urinary_bladder_S096.png`, size = [3300, 2000]) {

    # load mzpack/imzML raw data file
    # and config ggplot data source driver 
    # as MSImaging data reader
    ggplot(open.mzpack(system.file("data/HR2MSI mouse urinary bladder S096 - Figure1.cdf", package = "MSImaging")), 
           mapping = aes(driver = MSImaging()), 
           padding = "padding: 200px 600px 200px 250px;"
    ) 
       # rendering of a single ion m/z
       # default color palette is Jet color set
       + geom_msimaging(mz = 741.5, tolerance = "da:0.3")
       # add ggplot charting elements
       + ggtitle("MSImaging of m/z 741.5")
       + labs(x = "Dimension(X)", y = "Dimension(Y)")
       + scale_x_continuous(labels = "F0")
       + scale_y_continuous(labels = "F0")
    ;
}

下面的一段代码展示了在底层代码之中是如何实现上面的geom_msimaging图层渲染操作的。在geom_msimaging函数所创建的ggplot图层对象的渲染绘制之中,可以通过所设定的离子对象的mz值,从mzpack原始数据之中获取得到离子的图层信息数据。之后只需要调用mzkit库之中的质谱成像渲染核心函数RenderPixels即可完成当前的ggplot图层的渲染操作。

Dim rect As Rectangle = canvas.PlotRegion
Dim MSI As Image
Dim engine As Renderer = If(pixelDrawer, New PixelRender, New RectangleRender)
Dim colorSet As String
Dim ion As SingleIonLayer = getIonlayer(mz, mzdiff, ggplot)

If colorMap Is Nothing Then
    colorSet = theme.colorSet
Else
    colorSet = any.ToString(colorMap.colorMap)
End If

MSI = engine.RenderPixels(ion.MSILayer, ion.DimensionSize, Nothing, cutoff:=cutoff, colorSet:=colorSet)
MSI = Drawer.ScaleLayer(MSI, rect.Width, rect.Height, InterpolationMode.Bilinear)

Call g.DrawImage(MSI, rect)

Return New legendColorMapElement With {
    .width = canvas.Padding.Right * (3 / 4),
    .height = rect.Height,
    .colorMapLegend = New ColorMapLegend(colorSet, 100) With {
        .format = "G3",
        .tickAxisStroke = Stroke.TryParse(theme.legendTickAxisStroke).GDIObject,
        .tickFont = CSSFont.TryParse(theme.legendTickCSS).GDIObject(g.Dpi),
        .ticks = ion.GetIntensity.Range.CreateAxisTicks,
        .title = $"m/z {mz.ToString("F3")}",
        .titleFont = CSSFont.TryParse(theme.legendTitleCSS).GDIObject(g.Dpi),
        .noblank = True,
        .legendOffsetLeft = canvas.Padding.Right / 10
    }
}

离子RGB通道叠加质谱成像

在质谱成像可视化操作之中,除了对单分子的质谱成像之外,还存在有对至多三种离子的叠加可视化的操作。为什么至多只能叠加三种离子数据,这个是因为在gdi+程序之中,颜色一般是通过RGB这三种三原色来组合而得到的。每一个目标离子分别映射到颜色的各自三原色通道之中,即可完成叠加渲染操作了。

require(MSImaging);
require(mzkit);
require(ggplot);

options(memory.load = "max");

bitmap(file = `${@dir}/HR2MSI_mouse_urinary_bladder_S096_RGB.png`, size = [3300, 2000]) {

    # load mzpack/imzML raw data file
    # and config ggplot data source driver 
    # as MSImaging data reader
    ggplot(open.mzpack(system.file("data/HR2MSI mouse urinary bladder S096 - Figure1.cdf", package = "MSImaging")), 
           mapping = aes(driver = MSImaging()), 
           padding = "padding: 200px 600px 200px 250px;"
    ) 
       # rendering of rgb channels ion m/z
       + geom_red(mz = 743.5468, tolerance = "da:0.3")
       + geom_green(mz = 798.5414, tolerance = "da:0.3")
       + geom_blue(mz = 741.5303, tolerance = "da:0.3")
       # add ggplot charting elements
       + ggtitle("HR2MSI mouse urinary bladder S096 - Figure1")
       + labs(x = "Dimension(X)", y = "Dimension(Y)")
       + scale_x_continuous(labels = "F0")
       + scale_y_continuous(labels = "F0")
    ;
}

在RGB通道叠加渲染操作之中,可以通过geom_red/geom_green/geom_blue这三个函数分别指定三原色通道的目标离子。通过上面的三个函数的调用,我们可以在MSIRGBCompositionLayer图层对象之中分别创建了三个颜色通道的离子图层数据。之后就只需要通过mzkit代码库之中的ChannelCompositions质谱成像渲染核心函数进行渲染即可出结果图:

Dim rect As Rectangle = canvas.PlotRegion
Dim MSI As Image
Dim engine As Renderer = If(pixelDrawer, New PixelRender, New RectangleRender)
Dim redLayer As SingleIonLayer = DirectCast(red, MSIChannelLayer).getIonlayer(ggplot)
Dim greenLayer As SingleIonLayer = DirectCast(green, MSIChannelLayer).getIonlayer(ggplot)
Dim blueLayer As SingleIonLayer = DirectCast(blue, MSIChannelLayer).getIonlayer(ggplot)
Dim qcutRed As DoubleRange = {0, Renderer.AutoCheckCutMax(redLayer.GetIntensity, 0.8)}
Dim qcutGreen As DoubleRange = {0, Renderer.AutoCheckCutMax(greenLayer.GetIntensity, 0.8)}
Dim qcutBlue As DoubleRange = {0, Renderer.AutoCheckCutMax(blueLayer.GetIntensity, 0.8)}
Dim dims As New Size With {
    .Width = {redLayer.DimensionSize.Width, greenLayer.DimensionSize.Width, blueLayer.DimensionSize.Width}.Max,
    .Height = {redLayer.DimensionSize.Height, greenLayer.DimensionSize.Height, blueLayer.DimensionSize.Height}.Max
}

MSI = engine.ChannelCompositions(redLayer, greenLayer, blueLayer, dims, Nothing, cut:=(qcutRed, qcutGreen, qcutBlue), background:="black")
MSI = Drawer.ScaleLayer(MSI, rect.Width, rect.Height, InterpolationMode.Bilinear)

谢桂纲
Latest posts by 谢桂纲 (see all)

Attachments

3 Responses

  1. I’ve been exploring for a little for any high-quality articles or weblog posts in this kind of
    house . Exploring in Yahoo I finally stumbled upon this website.
    Studying this information So i am satisfied to express that I
    have an incredibly excellent uncanny feeling I found out just what I needed.
    I such a lot without a doubt will make certain to don?t disregard this site and provides it a glance regularly.

    来自马耳他
  2. This site was… how do you say it? Relevant!! Finally I’ve found something which helped
    me. Kudos!

    来自马耳他

Leave a Reply

Your email address will not be published. Required fields are marked *

博客文章
December 2024
S M T W T F S
1234567
891011121314
15161718192021
22232425262728
293031  
  1. 在mysql之中,针对24小时内的数据按照半个小时进行一次统计数量: ```sql SELECT DATE_FORMAT(FROM_UNIXTIME(FLOOR(UNIX_TIMESTAMP(add_time) / 1800) * 1800), '%Y-%m-%d %H:%i') AS half_hour, COUNT(*) AS count FROM user_track.page_view WHERE add_time >=…

  2. 针对图对象进行向量化表示嵌入: 首先,通过node2vec方法,将node表示为向量 第二步,针对node向量矩阵,进行umap降维计算,对node进行排序,生成node排序序列 第三步,针对node排序序列进行SGT序列图嵌入,实现将网络图对象嵌入为一维向量