估计阅读时长: 4 分钟 在代谢组学领域内,LCMS原始数据分析一般分为非靶向全扫原始数据,以及仅针对某些离子进行扫描的MRM靶向质谱数据。虽然二者都是基于LCMS方法进行实验,但是MRM靶向数据由于在事先已经通过实验确定,得到了Q1和Q3离子对信息,所以可以仅针对某一些特定代谢物进行检测。因为MRM数据是针对于某些代谢物检测的靶向数据,所以其XIC谱图在没有同分异构体存在的情况下,一般是很纯净的目标化合物的检测结果数据。所以在原始数据分离,定量计算方面都要比非靶向全扫结果数据要容易很多。 Order by Date Name Attachments xcms-logo-white • 183 kB • 161 click 01.07.2022lcmspreproc_slides_1.2 • 136 […]
估计阅读时长: 8 分钟 https://github.com/xieguigang/sciBASIC/tree/master/Data_science/Mathematica/SignalProcessing 进行峰识别是在代谢组学原始数据分析之中进行定量分析的很重要的一环。在代谢组学之中,定量分析分为靶向定量,以及非靶向定量计算这两大部分。 Order by Date Name Attachments Figure12.36 • 50 kB • 207 click 10.07.2021view_signal • […]
博客文章
July 2024
S M T W T F S
 123456
78910111213
14151617181920
21222324252627
28293031  
  1. 针对图对象进行向量化表示嵌入: 首先,通过node2vec方法,将node表示为向量 第二步,针对node向量矩阵,进行umap降维计算,对node进行排序,生成node排序序列 第三步,针对node排序序列进行SGT序列图嵌入,实现将网络图对象嵌入为一维向量