估计阅读时长: 2 分钟Github项目:https://github.com/xieguigang/marker 本程序包是一个基于R语言的综合性机器学习工具集,专门设计用于生物标志物发现和疾病预测模型的构建。该工具整合了多种机器学习算法,提供了从数据预处理、特征选择到模型构建与验证的完整工作流程,特别适用于代谢组学、基因组学等高维生物数据的分析研究。在这个程序包中,主要是通过marker函数来封装了从数据与处理到模型建立的每一个步骤,主要将程序包划分为了以下的工作步骤模块: 数据加载和预处理 初始可视化(PCA图)和统计分析(线性模型、描述性统计) 特征选择(如果未提供预选特征,则使用LASSO、随机森林和SVM-RFE三种方法) 数据分割为训练集和测试集 模型集成训练(逻辑回归、XGBoost、随机森林) 结果可视化(ROC曲线、特征重要性、SHAP分析等) 大家在这里可以通过下面的技术路线图来了解在所编写的程序包中所涉及到的分析内容与步骤: 所主要涉及到的模型算法原理 机器学习方法 数学原理 使用场景 应用 LASSO回归 LASSO(Least […]
估计阅读时长: 9 分钟https://github.com/xieguigang/sciBASIC 在实际应用的机器学习方法里,GradientTree Boosting (GBDT)是一个在很多应用里都很出彩的技术。XGBoost是一套提升树可扩展的机器学习系统。XGBoost全名叫(eXtreme Gradient Boosting)极端梯度提升。它是大规模并行boosted tree的工具,XGBoost 所应用的算法就是 GBDT(gradient boosting decision tree)的改进,既可以用于分类也可以用于回归问题中。 Order by Date Name […]
估计阅读时长: 8 分钟https://github.com/xieguigang/sciBASIC 在进行无监督聚类分析的方法之中,我们在算法代码之中一般会遇到求解与某一个样本数据点最相似的数据点的计算过程。对于这个计算过程,一般而言我们是基于欧几里得距离来完成的。 Order by Date Name Attachments Visual a KDtree Search • 274 kB • 467 […]
估计阅读时长: 8 分钟https://github.com/rsharp-lang/R-sharp 对于0,1两类分类问题,一些分类器得到的结果往往不是0,1这样的标签。如神经网络得到诸如0.5,0.8这样的分类结果。这时,我们人为取一个阈值,比如0.4,那么小于0.4的归为0类,大于等于0.4的归为1类,可以得到一个分类结果。同样,这个阈值我们可以取0.1或0.2等等。 Order by Date Name Attachments ROC • 221 kB • 477 click 2021年6月28日Roccurves • […]
Could you provide some practical examples of how this R package is used? For instance, how does it perform when…
这个和SQL相比较有什么优势?
ご提供いただきましたこの研究ツールに心より感謝申し上げます。お示しいただいたサンプルコードから見ますと、この方法は非常に使いやすいようです。しかし、実際のデータに適用する際、アルゴリズムがシングルスレッドであるため、大規模な空間代謝組学の生データを可視化する場合、計算プロセスが非常に長時間に及ぶ可能性があります。マルチスレッド計算を可能にした最適化版をご提供いただければ、使用体験が大幅に向上すると思われます。以上、私の個人的な使用感でございます。
大佬厉害
Je pense que cet algorithme présente encore des limitations importantes. Par exemple, sur plusieurs poules présentes sur l'image originale, l'une…