估计阅读时长: 11 分钟PhenoGraph提供了与UMAP类似的算法过程进行单细胞组学数据的细胞分型处理操作。与UMAP方法相比,PhenoGraph并不会产生数据降维效果,仅仅产生数据点Cluster信息。如果需要将数据进行可视化,还需要借助于t-SNE算法将PhenoGraph的分型结果数据投影到一个二维平面上完成。 Order by Date Name Attachments Phenograph-image4 • 200 kB • 482 click 2021年8月9日Automated Optimal Parameters […]
估计阅读时长: 15 分钟进行生物化学代谢反应网络的模拟计算,可以分为三种技术路线:基于线性规划做优化的FBA方法,基于常微分方程组求解的动力学模拟方法,以及最近发展的基于图神经网络做模拟计算的深度学习计算方法。在下面的表格中,在这里进行比较和总结了上面所提到的三种计算分析方法各自的计算原理和应用领域: 计算方法 原理 优势 适用场景 通量平衡分析(FBA) 基于约束条件(如化学计量矩阵、酶容量限制)和线性规划,在假设代谢网络处于稳态(即代谢物浓度不变)的前提下,计算代谢通量的分布,通常以最大化特定目标(如生物量生长)进行优化 1. 无需详细的酶动力学参数,特别适合大规模网络研究。2. 计算速度快,可系统性地预测基因敲除或环境扰动下的表型变化。3. 广泛应用于指导代谢工程,优化目标产物合成。 追求快速评估和全局优化:如果你的研究目标是在基因组尺度上快速评估微生物在不同条件下的生长或产物合成潜力,并且难以获取详细的动力学参数,FBA是一个非常实用的起点 动力学模拟 基于质量作用定律等构建常微分方程组(ODEs),描述每个代谢物浓度随时间变化的动力学过程,通过数值方法求解方程组 1. 能够捕捉代谢物浓度和通量的瞬态动态变化,揭示更精细的调控机制2. […]
估计阅读时长: 11 分钟https://github.com/SMRUCC/GCModeller 在R语言之中,存在着一个用于进行表达数据的时间序列分析的程序包:TCseq。TCseq的全称为Time course sequencing,即时间序列分析,通过对表达矩阵进行时间上的模糊CMeans聚类,得到表达变化趋势一致的基因列表,进行基因表达的时间趋势分析。 在GCModeller之中,我仿照着TCseq程序包,自己编写了一个时间序列的聚类与可视化分析的R#程序包模块,在这里介绍给大家。 Order by Date Name Attachments Gene expression pattern visualization • 2 […]
估计阅读时长: 5 分钟https://github.com/rsharp-lang/R-sharp 今天在这里给大家介绍的是一些在R#脚本语言编程之中的一些高级语法,关于R#语言的一些基础语法,大家可以阅读R#语言教程系列的第一篇《R#语言简明教程》 对于R#脚本与R脚本语言之间的关系,大家可以将R#语言看作为R语言的一个超集,相似于TypeScript语言与JavaScript语言之间的关系。在这篇文章中,我主要向大家介绍在R#语言之中针对R语言的一些不足进行的改进部分。
估计阅读时长: 8 分钟https://github.com/rsharp-lang/R-sharp R#语言的语法主要来自于R语言,其在保留了很多的R语言特性的同时,也添加了很多新语法特性。对于R#与R语言之间相同的语法特性,在本简明教程中我就不再叙述了,在这里主要是给大家说明一下R#语言相对于R语言新增的一些语法特性。 R#语言中的向量 R#语言任然保持着和其前辈R语言一样的向量化编程的特性。对于声明一个向量,在R语言之中,需要使用c函数进行申明,而对于R#语言而言,除了使用c函数,还可以直接使用方括号进行申明,例如: x = c("A","B","C") # x # [1] "A" "B" "C" x = […]
估计阅读时长: 3 分钟在BILIBILI上观看视频:《【GCModeller教程】基因组GO功能注释原理》 哈喽,各位小伙伴们好啊,你们可爱的六神无主鸠今天又开新课了。今天主要为大家讲解的内容是GO基因功能注释的原理和操作。在开始今天的新视频前,我先为大家来讲一个圣经中的神话: 大洪水过去后, 诺亚的三个儿子的后裔形成了人类的三大支系,居住在世界各地,遍布地面。那时候人们的语言、口音都没有分别。他们在往东边迁移的时候,在示拿这个地方遇见一片平原,就在那里住下。因为在平原上,用作建筑的石料很不易得到,他们就发明了制造砖的方法,用泥作成方块,再用火烧透,他们就拿砖当石头,又拿石漆当灰泥,建造起繁华的巴比伦城。 人们为自己的业绩感到骄傲,他们决定在巴比伦修一座通天的高塔,来传颂自己的赫赫威名,并作为集合全天下弟兄的标记,以免分散。因为大家语言相通,同心协力,阶梯式的通天塔修建得非常顺利,很快就高耸入云。 上帝是不允许凡人达到自己的高度的。他看到人们这样统一强大,心想,他们语言都一样,如果真修成宏伟的通天塔,那以后还有什么事干不成呢? 必须制止人类接近自己的狂妄。上帝就离开天国到人间,变乱了人们的语言。人们各自操起不同的语言,感情无法交流,思想很难统一。修造工程因语言纷争而停止了,通天塔的建造终于半途而废了。 Order by Date Name Attachments gene_ontology_annotation • 576 kB […]
估计阅读时长: 2 分钟在BILIBILI上观看视频:《【GCModeller教程】基因组功能富集计算原理》 Order by Date Name Attachments 20190818_GSEA_release.mp4_20190921_225144.467 • 226 kB • 480 click 2021年5月30日Fisher Exact Test […]
估计阅读时长: 2 分钟在BILIBILI上观看视频:《【GCModeller教程】KEGG代谢途径注释原理 (重置版)》 Order by Date Name Attachments kegg_annotation • 468 kB • 559 click 2021年5月30日release.mp4_20190921_225235.396 • […]
估计阅读时长: < 1 分钟https://github.com/rsharp-lang/R-sharp R#语言最开始的开发需求来自于对GCModeller的组件的调用需求。因为最开始GCModeller使用的是命令行模式进行运行,但是因为VB.NET语言为编译型语言,所开发的应用程序在发布之后,用户无法轻易的修改。自己对于一些比较个性化的数据分析,在引入R#语言之前,需要专门编写一段命令行代码跑GCModeller,会十分的不方便。所以后面就有了R#脚本语言的开发。 R#语言类似于R或者Matlab语言,也是一种向量化的编程脚本语言。其语法源自于R语言,同时也结合了一些TypeScript的语法,例如TypeScript之中的字符串插值语法就被引入了R#语言之中。 const words = ["world", "R# language", "GCModeller User"]; const hello = `hello ${words}!`; […]

Hello blogger, thank you for sharing this post! We process a large number of metagenomic samples, and every time we…
谢博,您好。阅读了您的博客文章非常受启发!这个基于k-mer数据库的过滤框架,其核心是一个“污染源数据库”和一个“基于覆盖度的决策引擎”。这意味着它的应用远不止于去除宿主reads。 我们可以轻松地将它扩展到其他场景: 例如去除PhiX测序对照:建一个PhiX的k-mer库,可以快速剔除Illumina测序中常见的对照序列。 例如去除常见实验室污染物:比如大肠杆菌、酵母等,建一个联合的污染物k-mer库,可以有效提升样本的纯净度。 例如还可以靶向序列富集:反过来想,如果我们建立一个目标物种(比如某种病原体)的k-mer库,然后用这个算法去“保留”而不是“去除”匹配的reads,这不就实现了一个超快速的靶向序列富集工具吗? 这中基于kmer算法的通用性和扩展性可能会是它的亮点之一。感谢博主提供了这样一个优秀的思想原型
It’s laborious to find knowledgeable people on this topic, however you sound like you realize what you’re speaking about! Thanks
WOW, display an image on a char only console this is really cool, I like this post because so much…
确实少有, 这么高质量的内容。谢谢作者。;-) 我很乐意阅读 你的这个技术博客网站。关于旅行者上的金唱片对外星朋友的美好愿望,和那个时代科技条件限制下人们做出的努力,激励人心。