估计阅读时长: 14 分钟https://github.com/xieguigang/sciBASIC 层次聚类通过计算不同类别数据点间的相似度来创建一棵有层次的嵌套聚类树。基于层次聚类分析,我们可以初步可视化我们的一些原始数据: 例如对样本的层次聚类分类,可以让我们了解到样本在分组之间以及分组内的异质性。 对生物序列进行基于相似度的层次聚类分析,我们可以了解到序列之间的相似性程度或者进化关系 Order by Date Name Attachments metabolome • 14 kB • 459 click […]
Visual a KDtree
估计阅读时长: 8 分钟https://github.com/xieguigang/sciBASIC 在进行无监督聚类分析的方法之中,我们在算法代码之中一般会遇到求解与某一个样本数据点最相似的数据点的计算过程。对于这个计算过程,一般而言我们是基于欧几里得距离来完成的。 Order by Date Name Attachments Visual a KDtree Search • 274 kB • 543 […]
binary tree clustering of phenotypic
估计阅读时长: 4 分钟https://github.com/xieguigang/bclusterTree 对于二叉树,大家肯定不会陌生。二叉树其实就是一个有向无环图(有向:访问的方向是从父节点指向子节点;无环:子节点不会成为其父辈节点的父节点),大家可以从根节点一直往下访问到任意一个叶节点;节点间的方向是根据键值的比较的大小结果来建立的,大的值在右边,小的值在左边(《左迁与右迁》),零值在当前节点。 二叉树示意图来自于这篇博文《Self-balanced Binary Search Trees with AVL in JavaScript》 Order by Date Name Attachments Rplot […]
博客文章
December 2025
S M T W T F S
 123456
78910111213
14151617181920
21222324252627
28293031  
  1. 谢博,您好。阅读了您的博客文章非常受启发!这个基于k-mer数据库的过滤框架,其核心是一个“污染源数据库”和一个“基于覆盖度的决策引擎”。这意味着它的应用远不止于去除宿主reads。 我们可以轻松地将它扩展到其他场景: 例如去除PhiX测序对照:建一个PhiX的k-mer库,可以快速剔除Illumina测序中常见的对照序列。 例如去除常见实验室污染物:比如大肠杆菌、酵母等,建一个联合的污染物k-mer库,可以有效提升样本的纯净度。 例如还可以靶向序列富集:反过来想,如果我们建立一个目标物种(比如某种病原体)的k-mer库,然后用这个算法去“保留”而不是“去除”匹配的reads,这不就实现了一个超快速的靶向序列富集工具吗? 这中基于kmer算法的通用性和扩展性可能会是它的亮点之一。感谢博主提供了这样一个优秀的思想原型

  2. WOW, display an image on a char only console this is really cool, I like this post because so much…

  3. 确实少有, 这么高质量的内容。谢谢作者。;-) 我很乐意阅读 你的这个技术博客网站。关于旅行者上的金唱片对外星朋友的美好愿望,和那个时代科技条件限制下人们做出的努力,激励人心。