估计阅读时长: 16 分钟KEGG 里面目前并没有“现成的每个 KO 一条代表性序列 FASTA”这种官方序列数据库,假若我们需要基于KEGG数据库中的KO信息的注释,那我们一般会需要自己从 KEGG GENES 里面把每个 KO 对应的基因/蛋白序列抓出来,再按 KO 编号组织成 fasta 集合构建出对应的数据库。基于所建立好的KEGG基因序列数据库,我们就可以实现下面的一些基因注释工作: 在全基因组规模代谢网络重建工作中,进行我们的目标基因组中的代谢网络中的酶节点的直系同源推断,从而将我们的目标基因组中的基因映射到具体的KEGG代谢网络上的节点位置,从而重建出代谢网络模型(使用带有KO编号的蛋白序列做比对注释) 假若我们在进行宏基因组的基因丰度的计算,则可以基于所建立的KEGG基因序列数据库作为参考库,进行宏基因组测序数据中的KO基因丰度的计算(使用带有KO编号的基因序列做比对注释) […]
估计阅读时长: 5 分钟将复杂的生物学过程拆解为单元化学反应,是进行定量模拟的基石。转录是基因表达调控的关键环节,决定了细胞在特定时间、特定环境下合成哪些蛋白质,对生命活动至关重要。最近的工作中需要将原本非常粗糙的虚拟细胞转录事件模型拆解为更加细分化的多步骤生物化学过程,以适应针对细胞群落生长的建模计算。下面为我将原核生物的转录过程拆解为一系列可以用化学式表示的单元步骤的结果。 在介绍这些分步骤之前,我们会需要首先来定义一下模型中会用到的各种“化学物质”(分子和复合物): RNAP: RNA聚合酶全酶(包含核心酶和σ因子)。 DNA: 基因组DNA双链。 DNA_P: 包含启动子区域的DNA。 DNA_T: 包含终止子区域的DNA。 NTP: 核糖核苷三磷酸(ATP, UTP, GTP, CTP的统称)。 PPi: […]
估计阅读时长: 22 分钟limma(Linear Models for Microarray Data)是一个基于R语言的Bioconductor包,最初用于微阵列数据的差异表达分析,现已扩展支持RNA-seq数据。其核心思想是利用线性模型(Linear Models)对基因表达数据进行建模,并结合经验贝叶斯(Empirical Bayes)方法在小样本情况下增强统计推断的稳健性。 Order by Date Name Attachments limma • 119 kB […]
估计阅读时长: 6 分钟微生物全基因组代谢网络(Genome-scale metabolic model, GEM)模型的发展历史可追溯至20世纪90年代。1994年,Varma和Palsson在《Applied and Environmental Microbiology》期刊上发表了开创性论文,题为"Stoichiometric flux balance models quantitatively predict growth and metabolic by-product […]
估计阅读时长: 4 分钟基于UMAP工具进行简单的自动化组织分区操作 在这里我们假设已经可以正常的将空间代谢数据导入至MZKit工作站软件之中。假若需要借助于MZKit工作站软件进行切片组织样本的自动化分区操作,相关的功能可以在【MSI Analysis】菜单栏中寻找到。在这里我们打开【Show Map Layer】按钮,选择【UMAP and clustering】功能。 基于降维的组织自动化分区原理 因为降维操作一般是一种特征提取操作,所以经过降维之后,在高维度空间上无法显现的特征,在低维度会呈现出来。在高维度空间散落的相近的数据点,在经过特征提取之后,低维度上会产生相似的特征信息,相互聚集在一簇。这样子我们就可以在低维度空间上通过一些聚类算法讲这些特征进行聚类,最后将聚类特征结果标记到各个散点上的对应的原始成像空间上,我们就可以看见组织分区的结果了。 Abdelmoula, W.M., Lopez, B.GC., Randall, E.C. et […]

[…] 在前面写了一篇文章来介绍我们可以如何通过KEGG的BHR评分来注释直系同源。在KEGG数据库的同源注释算法中,BHR的核心思想是“双向最佳命中”。它比简单的单向BLAST搜索(例如,只看你的基因A在数据库里的最佳匹配是基因B)更为严格和可靠。在基因注释中,这种方法可以有效减少因基因家族扩张、结构域保守等原因导致的假阳性注释,从而更准确地识别直系同源基因,而直系同源基因通常具有相同的功能。在今天重新翻看了下KAAS的帮助文档之后,发现KAAS系统中更新了下面的Assignment score计算公式: […]
不常看到, 没有多余矫饰的表达。敬意。
[…] 在前面写了一篇文章来介绍我们可以如何通过KEGG的BHR评分来注释直系同源。在今天重新翻看了下KAAS的帮助文档之后,发现KAAS系统中更新了下面的Assignment score计算公式: […]
thanks for your comment
What's up, this weekend is nice designed for me, for the reason that this moment i am reading this great…