估计阅读时长: 11 分钟https://github.com/SMRUCC/GCModeller 在R语言之中,存在着一个用于进行表达数据的时间序列分析的程序包:TCseq。TCseq的全称为Time course sequencing,即时间序列分析,通过对表达矩阵进行时间上的模糊CMeans聚类,得到表达变化趋势一致的基因列表,进行基因表达的时间趋势分析。 在GCModeller之中,我仿照着TCseq程序包,自己编写了一个时间序列的聚类与可视化分析的R#程序包模块,在这里介绍给大家。 Order by Date Name Attachments Gene expression pattern visualization • 2 […]

This clarifies everything perfectly.
其实,你不应该直接跑原始表达矩阵的。因为在原始表达矩阵中,基因的特征数量可能会非常多,做随机森林或者SVM建模就会会非常久。应该先用limma程序包对矩阵筛选一次,例如用log2fc绝对值按照阈值cutoff筛选一次,或者对log2fc绝对值排序后取前1000个特征,得到小一些feature集合的矩阵后再使用这个程序包做机器学习分析。
Thanks for taking the time to create this.
就是随便看看!
c⌒っ゚Д゚)っ救命啊,谢老师,我试了下用这个程序包直接跑转录组矩阵,跑了好久都没有结果