MNIST-LabelledVectorArray-60000x100
估计阅读时长: 23 分钟 https://github.com/rsharp-lang/R-sharp 降维是将数据由高维约减到低维的过程而用来揭示数据的本质低维结构。它作为克服“维数灾难”的途径在这些相关领域中扮演着重要的角色。在过去的几十年里,有大量的降维方法被不断地提出并被深入研究,其中常用的包括传统的降维算法如PCA和MDS;流形学习算法如UMAP、t-SNE、ISOMAP、LE以及LTSA等。 Order by Date Name Attachments MNIST-LabelledVectorArray-60000x100 • 230 kB • 290 click 27.06.2021MNIST-LabelledVectorArray-60000x100Euclidean_Distance • […]
博客文章
September 2024
S M T W T F S
1234567
891011121314
15161718192021
22232425262728
2930  
  1. 在mysql之中,针对24小时内的数据按照半个小时进行一次统计数量: ```sql SELECT DATE_FORMAT(FROM_UNIXTIME(FLOOR(UNIX_TIMESTAMP(add_time) / 1800) * 1800), '%Y-%m-%d %H:%i') AS half_hour, COUNT(*) AS count FROM user_track.page_view WHERE add_time >=…

  2. 针对图对象进行向量化表示嵌入: 首先,通过node2vec方法,将node表示为向量 第二步,针对node向量矩阵,进行umap降维计算,对node进行排序,生成node排序序列 第三步,针对node排序序列进行SGT序列图嵌入,实现将网络图对象嵌入为一维向量