估计阅读时长: 2 分钟 假若现在有两条Fasta序列放在你面前,现在需要你进行这两条Fasta序列的相似度计算分析。如果对于我而言,大学刚毕业刚入门生物信息学的时候,可能只能够想到通过blast比对的方式进行序列相似性计算分析。基于blast比对方式可以找到生物学意义上的序列相似性结果,但是计算的效率会比较低。假设现在让你使用这些序列进行机器学习建模分析,或者基于传统数学意义上的基于相似度的无监督聚类分析的时候,面对这些长度上长短不一的生物序列数据,可能会比较蒙圈,因为传统的数学分析方法都要求我们分析的目标至少应该是等长的向量数据。 Order by Date Name Attachments Fasta-A • 544 kB • 128 click 29.06.2023visualize • 45 […]
Recent Posts
Archives
- November 2023 (1)
- June 2023 (2)
- May 2023 (2)
- April 2023 (2)
- March 2023 (2)
- February 2023 (1)
- August 2022 (2)
- July 2022 (2)
- June 2022 (5)
- May 2022 (5)
- April 2022 (4)
- March 2022 (3)
- January 2022 (2)
- December 2021 (2)
- November 2021 (2)
- October 2021 (6)
- September 2021 (8)
- August 2021 (8)
- July 2021 (6)
- June 2021 (20)
- May 2021 (10)
博客文章
S | M | T | W | T | F | S |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
Tags
algorithm (32)
bilibili (3)
binary tree (3)
Chromatography (3)
clustering (19)
contour (3)
Darwinism (4)
dataframe (3)
data visualization (22)
dotnet-core (25)
GCModeller (19)
gdi+ (21)
ggplot (14)
graph (14)
heatmap (3)
html (3)
http (3)
image processing (7)
kegg (5)
kmeans (3)
language (7)
linq (3)
linux (7)
machine learning (3)
mass spectrometry (11)
math (18)
MSI (4)
mzkit (18)
network (8)
pathway (3)
pipeline (4)
query (5)
R# (41)
rsharp (22)
scripting (14)
single-cell (6)
sql (3)
symbolic computation (3)
text processing (4)
typescript (3)
ubuntu (3)
uniprot (3)
vb (16)
VisualBasic (45)
webassembly (3)
在mysql之中,针对24小时内的数据按照半个小时进行一次统计数量: ```sql SELECT DATE_FORMAT(FROM_UNIXTIME(FLOOR(UNIX_TIMESTAMP(add_time) / 1800) * 1800), '%Y-%m-%d %H:%i') AS half_hour, COUNT(*) AS count FROM user_track.page_view WHERE add_time >=…
针对图对象进行向量化表示嵌入: 首先,通过node2vec方法,将node表示为向量 第二步,针对node向量矩阵,进行umap降维计算,对node进行排序,生成node排序序列 第三步,针对node排序序列进行SGT序列图嵌入,实现将网络图对象嵌入为一维向量
Hi, I log on to your new stuff like every week. Your humoristic style is witty, keep it up
waiting and waiting.
Cool + for the post