估计阅读时长: 11 分钟在进行热图的渲染的时候,我们需要首先将需要进行渲染的数据转换为一个0到1之间的灰度值,然后基于所设定的颜色列表,将灰度值映射为颜色列表的索引号,获取某一个灰度对应的颜色,从而完成对热图的渲染过程。在这个过程中,假若我们是针对热图需要获取得到一个连续的颜色列表,则我们还需要使用插值算法针对基础的关键颜色列表进行插值计算,生成调色板。 Order by Date Name Attachments volcano_ggthemes_Traffic • 17 kB • 256 click 2025年6月12日volcano_ggthemes_excel_Ion_Boardroom • 15 […]
估计阅读时长: 11 分钟给定一组n个字符串数组,找到包含给定集合中每个字符串的最小字符串作为子字符串。我们可以假设这个字符串数组中没有字符串是另一个字符串的子字符串。那么基于上面的描述,我们就可以得到下面所示的问题求解目标: let arr[] = ["catg", "ctaagt", "gcta", "ttca", "atgcatc"] // output: gctaagttcatgcatc 上面的问题描述实际上是一个最短超字符串问题(shortest common superstring) Order […]

Hello blogger, thank you for sharing this post! We process a large number of metagenomic samples, and every time we…
谢博,您好。阅读了您的博客文章非常受启发!这个基于k-mer数据库的过滤框架,其核心是一个“污染源数据库”和一个“基于覆盖度的决策引擎”。这意味着它的应用远不止于去除宿主reads。 我们可以轻松地将它扩展到其他场景: 例如去除PhiX测序对照:建一个PhiX的k-mer库,可以快速剔除Illumina测序中常见的对照序列。 例如去除常见实验室污染物:比如大肠杆菌、酵母等,建一个联合的污染物k-mer库,可以有效提升样本的纯净度。 例如还可以靶向序列富集:反过来想,如果我们建立一个目标物种(比如某种病原体)的k-mer库,然后用这个算法去“保留”而不是“去除”匹配的reads,这不就实现了一个超快速的靶向序列富集工具吗? 这中基于kmer算法的通用性和扩展性可能会是它的亮点之一。感谢博主提供了这样一个优秀的思想原型
It’s laborious to find knowledgeable people on this topic, however you sound like you realize what you’re speaking about! Thanks
WOW, display an image on a char only console this is really cool, I like this post because so much…
确实少有, 这么高质量的内容。谢谢作者。;-) 我很乐意阅读 你的这个技术博客网站。关于旅行者上的金唱片对外星朋友的美好愿望,和那个时代科技条件限制下人们做出的努力,激励人心。