Recent Posts
Archives
- October 2025 (1)
- August 2025 (3)
- July 2025 (2)
- June 2025 (6)
- May 2025 (3)
- November 2023 (1)
- June 2023 (2)
- May 2023 (2)
- April 2023 (2)
- March 2023 (2)
- February 2023 (1)
- August 2022 (2)
- July 2022 (2)
- June 2022 (5)
- May 2022 (5)
- April 2022 (4)
- March 2022 (3)
- January 2022 (2)
- December 2021 (2)
- November 2021 (2)
- October 2021 (6)
- September 2021 (8)
- August 2021 (8)
- July 2021 (6)
- June 2021 (20)
- May 2021 (10)
博客文章
| S | M | T | W | T | F | S |
|---|---|---|---|---|---|---|
| 1 | ||||||
| 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| 16 | 17 | 18 | 19 | 20 | 21 | 22 |
| 23 | 24 | 25 | 26 | 27 | 28 | 29 |
| 30 | ||||||
Tags
algorithm (33)
bilibili (3)
binary tree (3)
Chromatography (3)
clustering (19)
contour (3)
Darwinism (4)
dataframe (3)
data visualization (23)
dotnet-core (25)
GCModeller (19)
gdi+ (22)
ggplot (14)
graph (14)
heatmap (5)
html (3)
http (4)
image processing (7)
kegg (5)
kmeans (3)
language (7)
linq (3)
linux (8)
machine learning (4)
mass spectrometry (12)
math (19)
MSI (4)
mzkit (19)
network (8)
pathway (4)
pipeline (4)
query (5)
R# (44)
rsharp (23)
scripting (14)
single-cell (6)
sql (3)
symbolic computation (3)
text processing (4)
typescript (3)
ubuntu (4)
uniprot (3)
vb (19)
VisualBasic (50)
webassembly (3)

其实,你不应该直接跑原始表达矩阵的。因为在原始表达矩阵中,基因的特征数量可能会非常多,做随机森林或者SVM建模就会会非常久。应该先用limma程序包对矩阵筛选一次,例如用log2fc绝对值按照阈值cutoff筛选一次,或者对log2fc绝对值排序后取前1000个特征,得到小一些feature集合的矩阵后再使用这个程序包做机器学习分析。
Thanks for taking the time to create this.
就是随便看看!
c⌒っ゚Д゚)っ救命啊,谢老师,我试了下用这个程序包直接跑转录组矩阵,跑了好久都没有结果
Could you provide some practical examples of how this R package is used? For instance, how does it perform when…