估计阅读时长: 4 分钟在代谢组学领域内,LCMS原始数据分析一般分为非靶向全扫原始数据,以及仅针对某些离子进行扫描的MRM靶向质谱数据。虽然二者都是基于LCMS方法进行实验,但是MRM靶向数据由于在事先已经通过实验确定,得到了Q1和Q3离子对信息,所以可以仅针对某一些特定代谢物进行检测。因为MRM数据是针对于某些代谢物检测的靶向数据,所以其XIC谱图在没有同分异构体存在的情况下,一般是很纯净的目标化合物的检测结果数据。所以在原始数据分离,定量计算方面都要比非靶向全扫结果数据要容易很多。 Order by Date Name Attachments xcms-logo-white • 183 kB • 615 click 2022年7月1日lcmspreproc_slides_1.2 • 136 […]
估计阅读时长: 2 分钟https://mzkit.org/ 代谢组文章整个坎坷的发表经历中,大家可能都会遇到的一个老大难问题就是我们有时候会需要从原始数据中得到物质注释结果的二级质谱图数据。对于熟悉xcms程序包的同学,获取二级质谱图可能会比较容易:无非就是加载原始数据,然后按照m/z和rt找到对应的二级scan就好了。但是,这种方法会需要编写脚本来完成。 Order by Date Name Attachments download • 33 kB • 663 click 2021年8月4日[278][MS_MS] FTMS […]
博客文章
February 2026
S M T W T F S
1234567
891011121314
15161718192021
22232425262728
  1. […] 基于之前的一篇文章《TF-IDF与N-gram One-hot文档嵌入算法原理》的学习,我们了解到可以将生物序列通过分解为kmer,组成单词集合用来表示一个文档。从而将长度各异的生物序列嵌入为长读一致的数值向量,进而可以用于后续的各种数据处理工作中。在这里,假设我们将基因组中的所有基因提取出来,然后通过blast比对的方式将基因注释到对应的ec number编号,既可以将某一个基因组使用一个ec number的集合来表示。通过这样子的数据表示方法,我们就可以将任意一个大小各异,基因组成不同的基因组都嵌入为具有相同维度特征的数值向量用于机器学习建模之类的工作。 […]