估计阅读时长: < 1 分钟https://github.com/rsharp-lang/R-sharp 前言 经过了2021年一年时间的奋斗,目前R#脚本语言环境终于可以算是能够支撑起比较完整的数据分析流程了。在2021年这段时间,我为R#脚本语言环境大概做了以下几件我认为是比较里程碑式的工作: 建立起了一个比较成熟的脚本打包系统 仿照R语言引入了ggplot和ggraph类似的作图系统 借助于mzkit的开发,将R#语言成功的应用于商业化的质谱数据分析产品之中 为了扩大R#语言环境的受众,在2022年初,也就是这个月内,我相继为Python语言和Julia语言添加了对R#语言环境的支持。下面我们就来聊聊在R#语言环境中的对上面所提到的两种语言的支持。 Order by Date Name Attachments programming • 262 kB […]

This clarifies everything perfectly.
其实,你不应该直接跑原始表达矩阵的。因为在原始表达矩阵中,基因的特征数量可能会非常多,做随机森林或者SVM建模就会会非常久。应该先用limma程序包对矩阵筛选一次,例如用log2fc绝对值按照阈值cutoff筛选一次,或者对log2fc绝对值排序后取前1000个特征,得到小一些feature集合的矩阵后再使用这个程序包做机器学习分析。
Thanks for taking the time to create this.
就是随便看看!
c⌒っ゚Д゚)っ救命啊,谢老师,我试了下用这个程序包直接跑转录组矩阵,跑了好久都没有结果