估计阅读时长: 9 分钟https://github.com/rsharp-lang/Rnb 之前使用Python脚本进行编写代码的时候,十分的羡慕Python脚本可以基于ipynb记事本进行文档化的编码。在之前R#脚本是缺少相关的代码库模块将可执行的R#脚本渲染成可视化文档。但是经过几天的开发工作时候,现在R#脚本编程已经具备有了文档化编程的基本框架了。 Order by Date Name Attachments 01510007-school-notebook • 32 kB • 449 click 2021年10月30日renderHtml_cli • […]
估计阅读时长: 9 分钟前段时间由于工作的需要,会需要从一些网站上抓取数据用来做数据分析。在原来我进行网页爬虫开发的时候,一般会需要专门针对网页格式,使用大量的正则表达式进行内容的解析。由于你也知道,VisualBasic语言所开发的程序为一个编译好的Assembly文件,所以假若所需要爬取的网页格式变化了,我们就需要对代码做修改和重新编译。这个时候就会非常的不方便。 Order by Date Name Attachments ea5d2885-bba5-410f-b02b-0589613412ed • 12 kB • 499 click 2021年5月29日graphquery_Rscript • 36 […]

Hello blogger, thank you for sharing this post! We process a large number of metagenomic samples, and every time we…
谢博,您好。阅读了您的博客文章非常受启发!这个基于k-mer数据库的过滤框架,其核心是一个“污染源数据库”和一个“基于覆盖度的决策引擎”。这意味着它的应用远不止于去除宿主reads。 我们可以轻松地将它扩展到其他场景: 例如去除PhiX测序对照:建一个PhiX的k-mer库,可以快速剔除Illumina测序中常见的对照序列。 例如去除常见实验室污染物:比如大肠杆菌、酵母等,建一个联合的污染物k-mer库,可以有效提升样本的纯净度。 例如还可以靶向序列富集:反过来想,如果我们建立一个目标物种(比如某种病原体)的k-mer库,然后用这个算法去“保留”而不是“去除”匹配的reads,这不就实现了一个超快速的靶向序列富集工具吗? 这中基于kmer算法的通用性和扩展性可能会是它的亮点之一。感谢博主提供了这样一个优秀的思想原型
It’s laborious to find knowledgeable people on this topic, however you sound like you realize what you’re speaking about! Thanks
WOW, display an image on a char only console this is really cool, I like this post because so much…
确实少有, 这么高质量的内容。谢谢作者。;-) 我很乐意阅读 你的这个技术博客网站。关于旅行者上的金唱片对外星朋友的美好愿望,和那个时代科技条件限制下人们做出的努力,激励人心。