估计阅读时长: 4 分钟酶的EC number(Enzyme Commission number)是国际生物化学与分子生物学学会(IUBMB)酶学委员会制定的酶分类与命名体系的核心标识符,自1961年首次发布以来,已成为酶学研究、数据库管理和生物技术应用的全球标准。这套四位数字的层级编码系统不仅解决了早期酶命名混乱的问题,还通过系统化分类揭示了酶催化功能的内在逻辑,为酶学研究提供了统一的框架。 Order by Date Name Attachments Enzyme_Commission_Numbers-visual_selection • 70 kB • 26 click […]
估计阅读时长: 18 分钟在前面的一篇《基因组功能注释(EC Number)的向量化嵌入》博客文章中,针对所注释得到的微生物基因组代谢信息,进行基于TF-IDF的向量化嵌入之后。为了可视化向量化嵌入的效果,通过UMAP进行降维,然后基于降维的结果进行散点图可视化。通过散点图可视化可以发现向量化的嵌入结果可以比较好的将不同物种分类来源的微生物基因组区分开来。除了针对降维后的数据进行散点图可视化,我们还可以直接针对向量化嵌入后的原始嵌入矩阵进行聚类,完成聚类结果的可视化。在这里我们主要是基于嵌入的原始结果进行二叉树聚类可视化。 Order by Date Name Attachments community_metabolic_tree • 220 kB • 35 click 2026年2月15日community-local • […]
估计阅读时长: < 1 分钟环境中的微生物往往以复杂群落的形式存在,不同物种之间通过代谢相互作用形成协同或竞争关系,共同完成生物地球化学循环、维持生态系统功能。近年来,随着高通量基因组测序技术的发展,研究者可以从环境样本中获取海量微生物基因组数据,为构建基因组尺度代谢模型(Genome-scale metabolic models, GEMs)提供了基础。GEMs将微生物的全基因组注释与生化反应网络相结合,可以用于模拟微生物在特定环境条件下的代谢能力,预测其生长和代谢产物。在单菌株层面,GEMs已被广泛用于解析微生物对环境变化的代谢适应机制、指导代谢工程设计以及预测药物靶点等。在群落层面,通过将多个GEMs耦合,可以研究微生物之间的相互作用,例如通过代谢物交换实现的协同或竞争关系。 Attachments The-taxonomic-composition-of-various-type-samples-and-the-results-of-neutral-model • 500 kB • 144 click 2026年1月4日
Electron micrographs of Synechococcus
估计阅读时长: 10 分钟https://gcmodeller.org/ 流平衡分析(flux balance analysis)是一种可以用来构建和模拟分析基因组级别的代谢网络的数学方法。流平衡分析是系统生物学(system biology)的一个重要的分析手段。不同于以湿实验的代谢通量分析(metabolic flux analysis, MFA),FBA是用数学方法对代谢网络里的代谢流进行拟合分析。 Order by Date Name Attachments Electron micrographs of […]
博客文章
February 2026
S M T W T F S
1234567
891011121314
15161718192021
22232425262728
  1. […] 在前面的一篇《基因组功能注释(EC Number)的向量化嵌入》博客文章中,针对所注释得到的微生物基因组代谢信息,进行基于TF-IDF的向量化嵌入之后。为了可视化向量化嵌入的效果,通过UMAP进行降维,然后基于降维的结果进行散点图可视化。通过散点图可视化可以发现向量化的嵌入结果可以比较好的将不同物种分类来源的微生物基因组区分开来。 […]

  2. […] 最近的工作中我需要按照之前的这篇博客文章《基因组功能注释(EC Number)的向量化嵌入》中所描述的流程,将好几十万个微生物基因组的功能蛋白进行酶编号的比对注释,然后基于注释结果进行向量化嵌入然后进行数据可视化。通过R#脚本对这些微生物基因组的蛋白fasta序列的提取操作,最终得到了一个大约是58GB的蛋白序列。然后将这个比较大型的蛋白序列比对到自己所收集到的ec number注释的蛋白序列参考数据库之上。 […]