估计阅读时长: 8 分钟原核生物细胞内的中心法则是指遗传信息从DNA经RNA到蛋白质的传递过程,具有高效和经济的特点。DNA复制、转录和翻译均在细胞质中进行,且转录与翻译高度偶联——新生mRNA尚未完全合成,核糖体便已结合并开始翻译,极大提升了蛋白质合成速率。原核生物mRNA常为多顺反子结构,一条mRNA可编码多个功能相关的蛋白质,且无内含子、无需剪接,可直接作为翻译模板。此外,原核mRNA半衰期极短,便于快速响应环境变化。基因表达主要通过操纵子结构在转录水平进行精细调控,如乳糖操纵子和色氨酸操纵子,使原核生物能够灵活适应多变环境。这些机制共同构成了原核生物中心法则的核心,体现了其高度优化的遗传信息传递系统。 Attachments the-central-dogma-of-molecular-biology1-l • 70 kB • 55 click 2025年12月21日
Computational Analysis of Biochemical Systems
估计阅读时长: 5 分钟将复杂的生物学过程拆解为单元化学反应,是进行定量模拟的基石。转录是基因表达调控的关键环节,决定了细胞在特定时间、特定环境下合成哪些蛋白质,对生命活动至关重要。最近的工作中需要将原本非常粗糙的虚拟细胞转录事件模型拆解为更加细分化的多步骤生物化学过程,以适应针对细胞群落生长的建模计算。下面为我将原核生物的转录过程拆解为一系列可以用化学式表示的单元步骤的结果。 在介绍这些分步骤之前,我们会需要首先来定义一下模型中会用到的各种“化学物质”(分子和复合物): RNAP: RNA聚合酶全酶(包含核心酶和σ因子)。 DNA: 基因组DNA双链。 DNA_P: 包含启动子区域的DNA。 DNA_T: 包含终止子区域的DNA。 NTP: 核糖核苷三磷酸(ATP, UTP, GTP, CTP的统称)。 PPi: […]
估计阅读时长: 30 分钟零分布(null distribution)是指在假设零假设(null hypothesis)成立的情况下,某个统计量随机取值的概率分布。在统计假设检验中,我们通常提出一个零假设(例如“两组数据没有显著差异”或“观察到的模式仅由随机因素造成”),然后根据观测数据计算一个检验统计量。零分布描述了这个统计量在零假设为真时的分布情况。通过将实际观测到的统计量与零分布进行比较,我们可以计算出P-value:即在零假设下,出现等于或更极端观测结果的概率。如果P-value很小(例如低于预设的显著性水平α),我们就认为零假设不太可能成立,从而拒绝零假设,认为观测结果是统计显著的。 Order by Date Name Attachments image-2 • 66 kB • 52 click 2025年12月16日NULL-pvalue […]
Fig. 4 Weighted correlation network analysis (WGCNA) identifies IFNα-regulated mRNA and protein modules
估计阅读时长: 2 分钟Github项目:https://github.com/xieguigang/marker 本程序包是一个基于R语言的综合性机器学习工具集,专门设计用于生物标志物发现和疾病预测模型的构建。该工具整合了多种机器学习算法,提供了从数据预处理、特征选择到模型构建与验证的完整工作流程,特别适用于代谢组学、基因组学等高维生物数据的分析研究。在这个程序包中,主要是通过marker函数来封装了从数据与处理到模型建立的每一个步骤,主要将程序包划分为了以下的工作步骤模块: 数据加载和预处理 初始可视化(PCA图)和统计分析(线性模型、描述性统计) 特征选择(如果未提供预选特征,则使用LASSO、随机森林和SVM-RFE三种方法) 数据分割为训练集和测试集 模型集成训练(逻辑回归、XGBoost、随机森林) 结果可视化(ROC曲线、特征重要性、SHAP分析等) 大家在这里可以通过下面的技术路线图来了解在所编写的程序包中所涉及到的分析内容与步骤: 所主要涉及到的模型算法原理 机器学习方法 数学原理 使用场景 应用 LASSO回归 LASSO(Least […]
估计阅读时长: 2 分钟Connected Component Labeling(连通组件标记算法)主要用于识别并标记二值图像中相互连接的像素区域(即连通区域)。 imports "geometry2D" from "graphics"; imports "machineVision" from "signalKit"; let raw = readImage("—Pngtree—five chickens […]
估计阅读时长: 7 分钟Boids算法(也称鸟群/鱼群算法)是Craig Reynolds于1986年提出的群体行为模拟模型,通过三条局部规则模拟鸟类、鱼群等生物群体的自组织运动。在Boids算法中,整个过程通过个体(称为“boid”)的局部交互实现全局有序行为,无需中央控制。每条规则计算个体与邻居的相互作用力,最终合力决定运动方向。Boids算法的精髓在于用局部规则涌现全局智能,其简洁性、可扩展性使其成为连接生物行为与工程控制的桥梁。从《蝙蝠侠》的蝙蝠群到无人机编队表演,从游戏生态到交通优化,Boids持续证明:自然界的简单规则,足以驱动复杂系统的有序演化。 Order by Date Name Attachments Boids • 28 MB • 313 click 2025年8月10日Boids • […]
估计阅读时长: 30 分钟https://github.com/xieguigang/Moira LBM(格子玻尔兹曼方法)凭借其介观模型特性,在流体模拟领域展现出显著技术优势:其碰撞与迁移过程仅依赖局部数据,天然适配GPU并行计算,CUDA实现可达成10–100倍加速比;处理复杂几何边界时无需生成体网格,通过格点标记固体并配合反弹边界即可高效实现,尤其适用于多孔介质等场景;同时,通过扩展分布函数可灵活耦合多物理场,例如引入温度分布函数模拟传热,或采用伪势模型捕获多相流中的相分离现象。尽管在高速或高粘度流动中存在局限,但通过MRT算法优化及GPU硬件加速,LBM已成为微流动、多孔介质、多相流等复杂流体模拟的理想工具,在航空工程等领域已有成功应用案例,其应用前景持续拓展。 Order by Date Name Attachments frame-00093 • 2 MB • 317 click 2025年8月9日ffmpeg • […]
估计阅读时长: 10 分钟目前经过改进和优化之后的基于mzkit代码库底层的msimaging质谱成像软件包在样本可视化上进行了非常多的改进,诸如: 添加样本原始背景叠加 目前进行质谱成像可视化,程序包不仅仅可以使用任意rgb纯色来作为可视化的背景。目前还可以支持直接使用原始数据的背景作为质谱成像的显示背景。进行这个显示的秘诀就在于简单的在脚本中添加一个TIC背景图层:geom_MSIbackground("TIC") ggplot(msi_data, padding = "padding: 200px 600px 200px 250px;") + geom_MSIbackground("TIC") # rendering of […]
估计阅读时长: 12 分钟https://github.com/xieguigang/Microsoft.VisualBasic.Drawing 最近在Linux服务器上面搞数据分析,因为Linux服务器只能够是通过SSH远程登陆上去的,没有图形化界面,所以想查看生成的结果图的话,只能够将图片文件通过FileZilla工具从服务器上下载下来在本地查看。这种方法非常的繁琐,至少相对于在服务器上跑完了程序后直接查看结果这样子的操作要复杂一些。 如果要能够直接在Linux服务器上查看图片,可行的一个方法就是,如果你有服务器的Root权限的话,可以将你的目录通过smb协议共享出来,在windows上挂在为共享文件夹,这样子在Linux服务器上跑完命令后,再回到Windows的Explorer程序上刷新一下。但是这个对于网络地理位置较远的服务器而言,可能网络速度不是很好,对于几十兆的图片结果文件,可能刷新会存在延迟,你可能需要刷新好几次才会更新Windows上的图片缩略图;并且通过smb开放共享文件夹你还需要记住smb的第二套账号密码,如果账号密码过于简单,那么你的Linux服务器上的数据安全性就会存在问题。 另一个方案就是通过SSH-FS方案,通过你的ssh账号将远程Linux服务器挂载为本地硬盘,来查看服务器上生成的图片文件。但是这个也和上面的方案一样会受限于网络传输速度的影响。 看来,我们只能够在Linux的终端上想办法来进行图片文件的查看了。 Order by Date Name Attachments Capture • 269 kB • 330 […]
博客文章
December 2025
S M T W T F S
 123456
78910111213
14151617181920
21222324252627
28293031  
  1. […] 在前面写了一篇文章来介绍我们可以如何通过KEGG的BHR评分来注释直系同源。在KEGG数据库的同源注释算法中,BHR的核心思想是“双向最佳命中”。它比简单的单向BLAST搜索(例如,只看你的基因A在数据库里的最佳匹配是基因B)更为严格和可靠。在基因注释中,这种方法可以有效减少因基因家族扩张、结构域保守等原因导致的假阳性注释,从而更准确地识别直系同源基因,而直系同源基因通常具有相同的功能。在今天重新翻看了下KAAS的帮助文档之后,发现KAAS系统中更新了下面的Assignment score计算公式: […]

  2. What's up, this weekend is nice designed for me, for the reason that this moment i am reading this great…