估计阅读时长: 16 分钟KEGG 里面目前并没有“现成的每个 KO 一条代表性序列 FASTA”这种官方序列数据库,假若我们需要基于KEGG数据库中的KO信息的注释,那我们一般会需要自己从 KEGG GENES 里面把每个 KO 对应的基因/蛋白序列抓出来,再按 KO 编号组织成 fasta 集合构建出对应的数据库。基于所建立好的KEGG基因序列数据库,我们就可以实现下面的一些基因注释工作: 在全基因组规模代谢网络重建工作中,进行我们的目标基因组中的代谢网络中的酶节点的直系同源推断,从而将我们的目标基因组中的基因映射到具体的KEGG代谢网络上的节点位置,从而重建出代谢网络模型(使用带有KO编号的蛋白序列做比对注释) 假若我们在进行宏基因组的基因丰度的计算,则可以基于所建立的KEGG基因序列数据库作为参考库,进行宏基因组测序数据中的KO基因丰度的计算(使用带有KO编号的基因序列做比对注释) […]
估计阅读时长: 27 分钟宏基因组测序直接从环境样本获取所有生物的遗传物质,产生的海量短读序列(reads)需要被快速准确地分类到不同物种或功能类别。然而,宏基因组数据具有复杂性高、物种多样且未知序列多等特点,这给分类算法带来了巨大挑战。传统的序列比对方法虽然准确,但在面对庞大的参考数据库时计算开销巨大,难以满足实时分析的需求。因此,研究者开发了多种基于k-mer(长度为k的子序列)的快速分类方法,其中布隆过滤器(Bloom Filter)作为一种高效的概率数据结构,在针对测序reads做物种上的快速分类这项工作中起到了一些关键作用。 Attachments Capture • 112 kB • 68 click 2025年12月19日
估计阅读时长: 14 分钟宏基因组测序所处理的对象是直接对环境样本中的所有DNA进行测序。达到无需培养即可揭示微生物群落的组成和功能潜力的目的。在数据处理中,一个核心任务是从海量短读序列中估算物种丰度(即每个物种在样本中的相对含量)和基因丰度(即每个基因或功能单元的相对含量)。传统的基于序列比对的方法计算成本高昂,而基于k-mer的方法通过利用固定长度的子序列(k-mer)信息,能够在不依赖完整比对的情况下快速估算丰度。 k-mer是指长度为k的连续子序列,例如在k=2的时候,DNA序列“ATCG”包含的2-mers有“AT”、“TC”、“CG”。通过统计读序列中k-mer的出现频率,并将其与参考数据库中的k-mer频率进行比较,我们可以推断出样本中各物种或基因的丰度。这种方法具有计算速度快、内存效率高的优势,并且无需对每个读进行精确比对,因此在处理大规模宏基因组数据时非常实用。 Order by Date Name Attachments workflow1 • 272 kB • 80 click 2025年12月8日workflow2 • […]
估计阅读时长: 13 分钟LCA算法是现代宏基因组学分析的核心技术之一,主要用于解决序列比对结果的分类不确定性问题。例如,我们在处理宏基因组测序reads的物种来源分类注释工作的时候,经常会思考一个问题:在宏基因组分析中,一个测序read通常与多个参考序列产生比对结果,这些结果可能指向不同的分类单元。那这条reads最可能的物种分类来源位置是怎样的,怎样可以通过一个算法,基于一系列的物种匹配结果来推断出一个合适的物种来源,既避免过度分类,又保证分类的准确性。 Order by Date Name Attachments family-tree-animal-kingdom • 99 kB • 120 click 2025年12月2日LCA • 245 […]
估计阅读时长: 11 分钟给定一组n个字符串数组,找到包含给定集合中每个字符串的最小字符串作为子字符串。我们可以假设这个字符串数组中没有字符串是另一个字符串的子字符串。那么基于上面的描述,我们就可以得到下面所示的问题求解目标: let arr[] = ["catg", "ctaagt", "gcta", "ttca", "atgcatc"] // output: gctaagttcatgcatc 上面的问题描述实际上是一个最短超字符串问题(shortest common superstring) Order […]
博客文章
January 2026
S M T W T F S
 123
45678910
11121314151617
18192021222324
25262728293031
  1. […] 在前面写了一篇文章来介绍我们可以如何通过KEGG的BHR评分来注释直系同源。在KEGG数据库的同源注释算法中,BHR的核心思想是“双向最佳命中”。它比简单的单向BLAST搜索(例如,只看你的基因A在数据库里的最佳匹配是基因B)更为严格和可靠。在基因注释中,这种方法可以有效减少因基因家族扩张、结构域保守等原因导致的假阳性注释,从而更准确地识别直系同源基因,而直系同源基因通常具有相同的功能。在今天重新翻看了下KAAS的帮助文档之后,发现KAAS系统中更新了下面的Assignment score计算公式: […]

  2. What's up, this weekend is nice designed for me, for the reason that this moment i am reading this great…