Abdelmoula, W.M., Lopez, B.GC., Randall, E.C. et al. Peak learning of mass spectrometry imaging data using artificial neural networks. Nat Commun 12, 5544 (2021). https://doi.org/10.1038/s41467-021-25744-8
估计阅读时长: 4 分钟基于UMAP工具进行简单的自动化组织分区操作 在这里我们假设已经可以正常的将空间代谢数据导入至MZKit工作站软件之中。假若需要借助于MZKit工作站软件进行切片组织样本的自动化分区操作,相关的功能可以在【MSI Analysis】菜单栏中寻找到。在这里我们打开【Show Map Layer】按钮,选择【UMAP and clustering】功能。 基于降维的组织自动化分区原理 因为降维操作一般是一种特征提取操作,所以经过降维之后,在高维度空间上无法显现的特征,在低维度会呈现出来。在高维度空间散落的相近的数据点,在经过特征提取之后,低维度上会产生相似的特征信息,相互聚集在一簇。这样子我们就可以在低维度空间上通过一些聚类算法讲这些特征进行聚类,最后将聚类特征结果标记到各个散点上的对应的原始成像空间上,我们就可以看见组织分区的结果了。 Abdelmoula, W.M., Lopez, B.GC., Randall, E.C. et […]
估计阅读时长: 8 分钟https://github.com/rsharp-lang/NRRD NRRD(Nearly Raw Raster Data)是一种用于存储类似于热图成像数据的文件格式。其实我们可以将NRRD看作为类似于bitmap之类的未压缩的原始光栅图像文件。只要我们有对应的解码方式,我们就可以像查看普通图片文件一样查看NRRD文件。 Order by Date Name Attachments raster__238 • 61 kB • 204 […]
博客文章
June 2025
S M T W T F S
1234567
891011121314
15161718192021
22232425262728
2930  
  1. […] 在上面的工具调用消息数据结构中,我们可以清楚的看见有需要进行调用的工具名称,以及参数列表。当我们拿到这样子的调用信息后,就可以基于一定的规则找到需要执行的运行时中的函数来完成功能的实现。对于.NET平台上,我们一般是使用自定义属性加反射操作来解析相关的名称绑定结果。在.NET平台上对于这样子的一个根据调用信息来进行运行时解析和调用的方法,可以稍微参考《【Darwinism】Linux平台上的VisualBasic高性能并行计算应用的开发》的反射代码方法。 […]