文章阅读目录大纲

估计阅读时长: 2 分钟

Connected Component Labeling(连通组件标记算法)主要用于识别并标记二值图像中相互连接的像素区域(即连通区域)。

imports "geometry2D" from "graphics";
imports "machineVision" from "signalKit";

let raw = readImage("—Pngtree—five chickens in different colors_3632916.jpg");
let bin = machineVision::ostu(raw, factor = 0.8);
let shapes = machineVision::ccl(bin);

print(`find ${length(shapes)} shapes.`);

bitmap(bin, file = "ostu_bin.bmp");
bitmap(file = "shapes.png", size = [3600, 2700]) {
    plot(shapes, scatter = TRUE, padding = "padding: 5% 5% 10% 10%;");
}

谢桂纲
Latest posts by 谢桂纲 (see all)

Attachments

6 Responses

  1. Je pense que cet algorithme présente encore des limitations importantes. Par exemple, sur plusieurs poules présentes sur l’image originale, l’une d’elles, parce qu’elle a des plumes blanches, voit ces dernières devenir indiscernables du fond blanc après que l’image a été traitée par binarisation de l’algorithme. Cela signifie que les informations caractéristiques de ces plumes ont directement disparu de l’image. C’est la raison pour laquelle, après identification, le corps de la première et de la troisième poule sur l’image apparaît dans un état fragmenté. Si nous pouvions modifier cet algorithme pour qu’il effectue l’analyse et l’identification via une image en niveaux de gris plutôt qu’une image binaire noire et blanche, je pense que les résultats seraient bien meilleurs.

    来自法国
  2. I would like to gain a more detailed understanding of the computational principles behind this algorithm. Could you please provide a more in-depth explanation specifically on this topic?

    来自CLOUDFLARE.COM
    • The algorithm failed to achieve the expected results, primarily because the color details of some hens were not preserved in the binarized image, lacking sufficient information to distinguish them.

      来自广西

Leave a Reply to MargaretElinor Cancel reply

Your email address will not be published. Required fields are marked *

博客文章
February 2026
S M T W T F S
1234567
891011121314
15161718192021
22232425262728
  1. […] 在前面的一篇《基因组功能注释(EC Number)的向量化嵌入》博客文章中,针对所注释得到的微生物基因组代谢信息,进行基于TF-IDF的向量化嵌入之后。为了可视化向量化嵌入的效果,通过UMAP进行降维,然后基于降维的结果进行散点图可视化。通过散点图可视化可以发现向量化的嵌入结果可以比较好的将不同物种分类来源的微生物基因组区分开来。 […]

  2. […] 最近的工作中我需要按照之前的这篇博客文章《基因组功能注释(EC Number)的向量化嵌入》中所描述的流程,将好几十万个微生物基因组的功能蛋白进行酶编号的比对注释,然后基于注释结果进行向量化嵌入然后进行数据可视化。通过R#脚本对这些微生物基因组的蛋白fasta序列的提取操作,最终得到了一个大约是58GB的蛋白序列。然后将这个比较大型的蛋白序列比对到自己所收集到的ec number注释的蛋白序列参考数据库之上。 […]