估计阅读时长: 2 分钟imports "clustering" from "MLkit"; require(graphics2D); multishapes = read.csv("./multishapes.csv"); [x, y] = list(multishapes[, "x"], multishapes[, "y"]); print(multishapes, […]
估计阅读时长: < 1 分钟https://github.com/rsharp-lang/R-sharp 前言 经过了2021年一年时间的奋斗,目前R#脚本语言环境终于可以算是能够支撑起比较完整的数据分析流程了。在2021年这段时间,我为R#脚本语言环境大概做了以下几件我认为是比较里程碑式的工作: 建立起了一个比较成熟的脚本打包系统 仿照R语言引入了ggplot和ggraph类似的作图系统 借助于mzkit的开发,将R#语言成功的应用于商业化的质谱数据分析产品之中 为了扩大R#语言环境的受众,在2022年初,也就是这个月内,我相继为Python语言和Julia语言添加了对R#语言环境的支持。下面我们就来聊聊在R#语言环境中的对上面所提到的两种语言的支持。 Order by Date Name Attachments programming • 262 kB […]
[…] 《为大语言模型运行添加工具调用》 […]
[…] 《从头创建一个DeepSeek客户端》 […]
[…] 在上面的工具调用消息数据结构中,我们可以清楚的看见有需要进行调用的工具名称,以及参数列表。当我们拿到这样子的调用信息后,就可以基于一定的规则找到需要执行的运行时中的函数来完成功能的实现。对于.NET平台上,我们一般是使用自定义属性加反射操作来解析相关的名称绑定结果。在.NET平台上对于这样子的一个根据调用信息来进行运行时解析和调用的方法,可以稍微参考《【Darwinism】Linux平台上的VisualBasic高性能并行计算应用的开发》的反射代码方法。 […]
[…] 在前面的文章《从头创建一个DeepSeek客户端》的请求消息的数据结构的基础上,我们在这里再增加一个工具信息的列表,在这个工具信息列表中,包括了工具的名称,工具的描述信息,以及工具的参数信息。对应的新增加的数据结构如下所示: […]
You have the gift of turning abstract thoughts into something tangible, allowing the reader to grasp concepts with clarity.