估计阅读时长: 15 分钟https://gcmodeller.org 在这篇博客文章之中,我主要是来详细介绍一下是如何从头开始实现Phenograph单细胞分型算法的。在之前的一篇博客文章《【单细胞组学】PhenoGraph单细胞分型》之中,我们介绍了Phenograph算法的简单原理,以及一个在R语言之中所实现的Phenograph算法的程序包Rphenograph。在这里我主要是详细介绍在GCModeller软件之中所实现的VisualBasic语言版本的Phenograph单细胞分型算法。 Attachments Rphenograph • 236 kB • 424 click 2021年9月20日
博客文章
September 2021
S M T W T F S
 1234
567891011
12131415161718
19202122232425
2627282930  
  1. 其实,你不应该直接跑原始表达矩阵的。因为在原始表达矩阵中,基因的特征数量可能会非常多,做随机森林或者SVM建模就会会非常久。应该先用limma程序包对矩阵筛选一次,例如用log2fc绝对值按照阈值cutoff筛选一次,或者对log2fc绝对值排序后取前1000个特征,得到小一些feature集合的矩阵后再使用这个程序包做机器学习分析。

  2. 就是随便看看!