估计阅读时长: 27 分钟宏基因组测序直接从环境样本获取所有生物的遗传物质,产生的海量短读序列(reads)需要被快速准确地分类到不同物种或功能类别。然而,宏基因组数据具有复杂性高、物种多样且未知序列多等特点,这给分类算法带来了巨大挑战。传统的序列比对方法虽然准确,但在面对庞大的参考数据库时计算开销巨大,难以满足实时分析的需求。因此,研究者开发了多种基于k-mer(长度为k的子序列)的快速分类方法,其中布隆过滤器(Bloom Filter)作为一种高效的概率数据结构,在针对测序reads做物种上的快速分类这项工作中起到了一些关键作用。 Attachments Capture • 112 kB • 223 click 2025年12月19日
博客文章
February 2026
S M T W T F S
1234567
891011121314
15161718192021
22232425262728
  1. […] 在前面的一篇《基因组功能注释(EC Number)的向量化嵌入》博客文章中,针对所注释得到的微生物基因组代谢信息,进行基于TF-IDF的向量化嵌入之后。为了可视化向量化嵌入的效果,通过UMAP进行降维,然后基于降维的结果进行散点图可视化。通过散点图可视化可以发现向量化的嵌入结果可以比较好的将不同物种分类来源的微生物基因组区分开来。 […]

  2. […] 最近的工作中我需要按照之前的这篇博客文章《基因组功能注释(EC Number)的向量化嵌入》中所描述的流程,将好几十万个微生物基因组的功能蛋白进行酶编号的比对注释,然后基于注释结果进行向量化嵌入然后进行数据可视化。通过R#脚本对这些微生物基因组的蛋白fasta序列的提取操作,最终得到了一个大约是58GB的蛋白序列。然后将这个比较大型的蛋白序列比对到自己所收集到的ec number注释的蛋白序列参考数据库之上。 […]