估计阅读时长: 8 分钟 https://github.com/xieguigang/LLMs 已知,现在我们可以成功的和正在运行的大语言模型服务勾搭了,现在能够让大语言模型为我们做些什么。很遗憾的是,由于大语言模型本质上只是一个数学模型,其作用只是针对我们的输入找出最佳的字符输出组合。如果我们没有额外的针对大语言模型进行拓展,我们所勾搭上的大语言模型充其量也只是一个聊天机器人,他既不能帮我们发送email,也不能够帮助我们调节屋内的灯光,只能够做到分析我们输入的文本,然后输出一段最佳的文本。所以我们需要通过针对大语言模型添加额外的拓展来帮助我们实现各种功能。 又已知,大语言模型的本质就是进行文本的结构化分析,那么假如我们的输入信息中包含有某些工具函数的描述信息,而且大语言模型能够正确的分析出我们的输入文本和输入信息中所包含的工具函数之间的对应关系,那么大语言模型的输出就可以专门定向的变换为一种针对输入信息所对应的函数调用的结构化文本信息输出。当运行大语言模型的基础服务捕捉到这种结构化文本(例如json)输出后就可以通过这种结构化文本信息的内容解析结果来调用对应的外部工具,这样子我们就可以让大语言模型来帮助我们完成特定的任务了。这种特性就是大语言模型的Function Calling功能。
博客文章
October 2025
S M T W T F S
 1234
567891011
12131415161718
19202122232425
262728293031  
  1. ご提供いただきましたこの研究ツールに心より感謝申し上げます。お示しいただいたサンプルコードから見ますと、この方法は非常に使いやすいようです。しかし、実際のデータに適用する際、アルゴリズムがシングルスレッドであるため、大規模な空間代謝組学の生データを可視化する場合、計算プロセスが非常に長時間に及ぶ可能性があります。マルチスレッド計算を可能にした最適化版をご提供いただければ、使用体験が大幅に向上すると思われます。以上、私の個人的な使用感でございます。

  2. Je pense que cet algorithme présente encore des limitations importantes. Par exemple, sur plusieurs poules présentes sur l'image originale, l'une…