估计阅读时长: 5 分钟将复杂的生物学过程拆解为单元化学反应,是进行定量模拟的基石。转录是基因表达调控的关键环节,决定了细胞在特定时间、特定环境下合成哪些蛋白质,对生命活动至关重要。最近的工作中需要将原本非常粗糙的虚拟细胞转录事件模型拆解为更加细分化的多步骤生物化学过程,以适应针对细胞群落生长的建模计算。下面为我将原核生物的转录过程拆解为一系列可以用化学式表示的单元步骤的结果。 在介绍这些分步骤之前,我们会需要首先来定义一下模型中会用到的各种“化学物质”(分子和复合物): RNAP: RNA聚合酶全酶(包含核心酶和σ因子)。 DNA: 基因组DNA双链。 DNA_P: 包含启动子区域的DNA。 DNA_T: 包含终止子区域的DNA。 NTP: 核糖核苷三磷酸(ATP, UTP, GTP, CTP的统称)。 PPi: […]
估计阅读时长: 7 分钟一般而言,进行全基因组的转录表达调控网络的建立,我们需要基于两个数据结果来完成: 目标基因的转录调控位点信息(Motif搜索结果,构成网络之中的节点) 转录调控位点相应的转录调控因子(Motif位点相关的转录调控因子,构成网络之中的边连接) Order by Date Name Attachments Xor • 271 kB • 653 click 2022年6月11日An […]

Thank you so much for your thoughtful and encouraging comment! I truly appreciate the time you took to read through…
已经写完了
A very inspiring pipeline for turning EC-based annotations into genome-scale embeddings. Great post! I really enjoyed the clear, end‑to‑end pipeline…
[…] 基于之前的一篇文章《TF-IDF与N-gram One-hot文档嵌入算法原理》的学习,我们了解到可以将生物序列通过分解为kmer,组成单词集合用来表示一个文档。从而将长度各异的生物序列嵌入为长读一致的数值向量,进而可以用于后续的各种数据处理工作中。在这里,假设我们将基因组中的所有基因提取出来,然后通过blast比对的方式将基因注释到对应的ec number编号,既可以将某一个基因组使用一个ec number的集合来表示。通过这样子的数据表示方法,我们就可以将任意一个大小各异,基因组成不同的基因组都嵌入为具有相同维度特征的数值向量用于机器学习建模之类的工作。 […]
I'm fine, thank you. and you?