估计阅读时长: < 1 分钟UPGMA(Unweighted Pair Group Method with Arithmetic Mean,非加权配对组平均法)是一种经典的基于距离矩阵构建系统发育树的聚类算法。其核心思想是假设进化速率恒定(分子钟假说),通过迭代合并距离最近的两个类群(或序列)来构建树。UPGMA算法具有原理简单,计算速度快,易于理解和实现。对于符合分子钟假说(即所有分支进化速率相同)的数据,能给出正确的拓扑结构这些优点。但是其“进化速率恒定”的假设在现实中常常不成立。如果数据存在明显的速率差异(即存在长枝),UPGMA可能会构建出错误的树(拓扑结构错误)。因此,它更适用于进化速率相对均匀的近缘物种或基因的比较。
估计阅读时长: 18 分钟https://github.com/rsharp-lang/R-sharp/tree/master/studio/RData 如果我们需要将上游的R数据分析环境之中的数据集串流至下游的R#数据分析环境之中,构建出一个不同的数据分析环境混合在一块的自动化数据分析流程。我们一般会需要将上游的R环境之中的数据符号对象以RData的格式串流到下游环境中,下游环境进行反序列化加载数据到环境中执行相应的分析。例如在下游执行定制化程度更高的数据作图,将数据以在上游R环境中比较困难实现的其他二进制文件格式进行保存,或者进行分布式的跨物理机的集群化计算,等等用于实现单纯依靠R环境所比较困难实现的功能。 从上一篇博客文章之中我们比较下详细的了解了RData数据文件的文件格式以及对应的读取操作。在这篇文章之中我们来了解如何基于我们通过对RData文件读取操作所获取得到的链表数据进行反序列化操作,将R环境之中的数据集串流加载到下游的R#数据分析环境之中。 Order by Date Name Attachments rstudio-og-fb-1-1024x538 • 39 kB • 662 click 2021年12月4日read-vector […]
估计阅读时长: 19 分钟https://github.com/rsharp-lang/R-sharp/tree/master/studio/RData 在最近的工作中,需要将Docker容器内的R环境之中的数据集无缝的串流到下游的.NET Core数据分析环境之中,基于.NET Core代码库进行数据可视化之类的操作。目前在R环境与.NET Core环境之间进行交互仅存在有一个比较出名的R.NET项目。但是对于使用R.NET项目而言,我们只能够在.NET Core环境之中调用R环境做数据分析,并不能够实现R环境调用.NET Core数据分析环境。并且R.NET项目必须要依赖于R环境对应的库文件,所以使用R.NET并不能够满足我们在Docker容器间进行R数据分析环境与.Net Core数据分析环境之间的无缝衔接。 Order by Date Name Attachments RStudio_Logo • 185 […]
博客文章
February 2026
S M T W T F S
1234567
891011121314
15161718192021
22232425262728
  1. […] 在前面的一篇《基因组功能注释(EC Number)的向量化嵌入》博客文章中,针对所注释得到的微生物基因组代谢信息,进行基于TF-IDF的向量化嵌入之后。为了可视化向量化嵌入的效果,通过UMAP进行降维,然后基于降维的结果进行散点图可视化。通过散点图可视化可以发现向量化的嵌入结果可以比较好的将不同物种分类来源的微生物基因组区分开来。 […]

  2. […] 最近的工作中我需要按照之前的这篇博客文章《基因组功能注释(EC Number)的向量化嵌入》中所描述的流程,将好几十万个微生物基因组的功能蛋白进行酶编号的比对注释,然后基于注释结果进行向量化嵌入然后进行数据可视化。通过R#脚本对这些微生物基因组的蛋白fasta序列的提取操作,最终得到了一个大约是58GB的蛋白序列。然后将这个比较大型的蛋白序列比对到自己所收集到的ec number注释的蛋白序列参考数据库之上。 […]