估计阅读时长: < 1 分钟环境中的微生物往往以复杂群落的形式存在,不同物种之间通过代谢相互作用形成协同或竞争关系,共同完成生物地球化学循环、维持生态系统功能。近年来,随着高通量基因组测序技术的发展,研究者可以从环境样本中获取海量微生物基因组数据,为构建基因组尺度代谢模型(Genome-scale metabolic models, GEMs)提供了基础。GEMs将微生物的全基因组注释与生化反应网络相结合,可以用于模拟微生物在特定环境条件下的代谢能力,预测其生长和代谢产物。在单菌株层面,GEMs已被广泛用于解析微生物对环境变化的代谢适应机制、指导代谢工程设计以及预测药物靶点等。在群落层面,通过将多个GEMs耦合,可以研究微生物之间的相互作用,例如通过代谢物交换实现的协同或竞争关系。 Attachments The-taxonomic-composition-of-various-type-samples-and-the-results-of-neutral-model • 500 kB • 150 click 2026年1月4日
博客文章
December 2025
S M T W T F S
 123456
78910111213
14151617181920
21222324252627
28293031  
  1. […] 在前面的一篇《基因组功能注释(EC Number)的向量化嵌入》博客文章中,针对所注释得到的微生物基因组代谢信息,进行基于TF-IDF的向量化嵌入之后。为了可视化向量化嵌入的效果,通过UMAP进行降维,然后基于降维的结果进行散点图可视化。通过散点图可视化可以发现向量化的嵌入结果可以比较好的将不同物种分类来源的微生物基因组区分开来。 […]

  2. […] 最近的工作中我需要按照之前的这篇博客文章《基因组功能注释(EC Number)的向量化嵌入》中所描述的流程,将好几十万个微生物基因组的功能蛋白进行酶编号的比对注释,然后基于注释结果进行向量化嵌入然后进行数据可视化。通过R#脚本对这些微生物基因组的蛋白fasta序列的提取操作,最终得到了一个大约是58GB的蛋白序列。然后将这个比较大型的蛋白序列比对到自己所收集到的ec number注释的蛋白序列参考数据库之上。 […]