估计阅读时长: 14 分钟宏基因组测序所处理的对象是直接对环境样本中的所有DNA进行测序。达到无需培养即可揭示微生物群落的组成和功能潜力的目的。在数据处理中,一个核心任务是从海量短读序列中估算物种丰度(即每个物种在样本中的相对含量)和基因丰度(即每个基因或功能单元的相对含量)。传统的基于序列比对的方法计算成本高昂,而基于k-mer的方法通过利用固定长度的子序列(k-mer)信息,能够在不依赖完整比对的情况下快速估算丰度。 k-mer是指长度为k的连续子序列,例如在k=2的时候,DNA序列“ATCG”包含的2-mers有“AT”、“TC”、“CG”。通过统计读序列中k-mer的出现频率,并将其与参考数据库中的k-mer频率进行比较,我们可以推断出样本中各物种或基因的丰度。这种方法具有计算速度快、内存效率高的优势,并且无需对每个读进行精确比对,因此在处理大规模宏基因组数据时非常实用。 Order by Date Name Attachments workflow1 • 272 kB • 199 click 2025年12月8日workflow2 • […]
博客文章
December 2025
S M T W T F S
 123456
78910111213
14151617181920
21222324252627
28293031  
  1. […] 在前面的一篇《基因组功能注释(EC Number)的向量化嵌入》博客文章中,针对所注释得到的微生物基因组代谢信息,进行基于TF-IDF的向量化嵌入之后。为了可视化向量化嵌入的效果,通过UMAP进行降维,然后基于降维的结果进行散点图可视化。通过散点图可视化可以发现向量化的嵌入结果可以比较好的将不同物种分类来源的微生物基因组区分开来。 […]

  2. […] 最近的工作中我需要按照之前的这篇博客文章《基因组功能注释(EC Number)的向量化嵌入》中所描述的流程,将好几十万个微生物基因组的功能蛋白进行酶编号的比对注释,然后基于注释结果进行向量化嵌入然后进行数据可视化。通过R#脚本对这些微生物基因组的蛋白fasta序列的提取操作,最终得到了一个大约是58GB的蛋白序列。然后将这个比较大型的蛋白序列比对到自己所收集到的ec number注释的蛋白序列参考数据库之上。 […]