估计阅读时长: 2 分钟宏基因组学(Metagenomics)通过直接测序环境样本中的全部DNA,从而避免了传统培养方法的局限,使我们能够研究不可培养微生物的多样性。然而,当样本来自宿主相关环境(如人类或小鼠的肠道、土壤等)时,测序数据中不可避免地包含大量宿主自身的DNA序列。这些宿主序列会占据测序读数,增加分析成本,并可能干扰对微生物群落组成的准确推断。因此,在宏基因组数据分析中,去除宿主序列(Host Sequence Removal)是至关重要的预处理步骤。去除宿主序列的算法多种多样,其中基于k-mer的方法因其高效和可扩展性而备受关注。 Attachments Metagenomics • 211 kB • 230 click 2025年11月29日
博客文章
November 2025
S M T W T F S
 1
2345678
9101112131415
16171819202122
23242526272829
30  
  1. […] 基于之前的一篇文章《TF-IDF与N-gram One-hot文档嵌入算法原理》的学习,我们了解到可以将生物序列通过分解为kmer,组成单词集合用来表示一个文档。从而将长度各异的生物序列嵌入为长读一致的数值向量,进而可以用于后续的各种数据处理工作中。在这里,假设我们将基因组中的所有基因提取出来,然后通过blast比对的方式将基因注释到对应的ec number编号,既可以将某一个基因组使用一个ec number的集合来表示。通过这样子的数据表示方法,我们就可以将任意一个大小各异,基因组成不同的基因组都嵌入为具有相同维度特征的数值向量用于机器学习建模之类的工作。 […]