估计阅读时长: 10 分钟  https://github.com/xieguigang/LLMs 大语言模型从2023年开始,在最近几年非常的火爆。在最近的一段时间,有大语言模型自动化处理数据的需求,开发了一个基于Ollama服务的客户端来通过大语言模型执行自动化任务。在这里记录下这个开发过程。 Ollama介绍 Ollama 是一个开源的大型语言模型(LLM)服务工具,专注于简化本地环境中大模型的部署与管理。它通过类似 Docker 的框架设计,让用户能以极低门槛在个人电脑或服务器上运行各类开源模型(如 Llama 3、Mistral、DeepSeek 等),实现数据隐私与离线推理的平衡。 Order by Date Name Attachments […]
博客文章
May 2025
S M T W T F S
 123
45678910
11121314151617
18192021222324
25262728293031
  1. […] 在前面的一篇《基因组功能注释(EC Number)的向量化嵌入》博客文章中,针对所注释得到的微生物基因组代谢信息,进行基于TF-IDF的向量化嵌入之后。为了可视化向量化嵌入的效果,通过UMAP进行降维,然后基于降维的结果进行散点图可视化。通过散点图可视化可以发现向量化的嵌入结果可以比较好的将不同物种分类来源的微生物基因组区分开来。 […]

  2. […] 最近的工作中我需要按照之前的这篇博客文章《基因组功能注释(EC Number)的向量化嵌入》中所描述的流程,将好几十万个微生物基因组的功能蛋白进行酶编号的比对注释,然后基于注释结果进行向量化嵌入然后进行数据可视化。通过R#脚本对这些微生物基因组的蛋白fasta序列的提取操作,最终得到了一个大约是58GB的蛋白序列。然后将这个比较大型的蛋白序列比对到自己所收集到的ec number注释的蛋白序列参考数据库之上。 […]