估计阅读时长: 18 分钟https://github.com/rsharp-lang/R-sharp/tree/master/studio/RData 如果我们需要将上游的R数据分析环境之中的数据集串流至下游的R#数据分析环境之中,构建出一个不同的数据分析环境混合在一块的自动化数据分析流程。我们一般会需要将上游的R环境之中的数据符号对象以RData的格式串流到下游环境中,下游环境进行反序列化加载数据到环境中执行相应的分析。例如在下游执行定制化程度更高的数据作图,将数据以在上游R环境中比较困难实现的其他二进制文件格式进行保存,或者进行分布式的跨物理机的集群化计算,等等用于实现单纯依靠R环境所比较困难实现的功能。 从上一篇博客文章之中我们比较下详细的了解了RData数据文件的文件格式以及对应的读取操作。在这篇文章之中我们来了解如何基于我们通过对RData文件读取操作所获取得到的链表数据进行反序列化操作,将R环境之中的数据集串流加载到下游的R#数据分析环境之中。 Order by Date Name Attachments rstudio-og-fb-1-1024x538 • 39 kB • 480 click 2021年12月4日read-vector […]
估计阅读时长: 17 分钟https://github.com/rsharp-lang/R-sharp/tree/master/studio/RData 在最近的工作中,需要将Docker容器内的R环境之中的数据集无缝的串流到下游的.NET Core数据分析环境之中,基于.NET Core代码库进行数据可视化之类的操作。目前在R环境与.NET Core环境之间进行交互仅存在有一个比较出名的R.NET项目。但是对于使用R.NET项目而言,我们只能够在.NET Core环境之中调用R环境做数据分析,并不能够实现R环境调用.NET Core数据分析环境。并且R.NET项目必须要依赖于R环境对应的库文件,所以使用R.NET并不能够满足我们在Docker容器间进行R数据分析环境与.Net Core数据分析环境之间的无缝衔接。 Order by Date Name Attachments RStudio_Logo • 185 […]
博客文章
December 2021
S M T W T F S
 1234
567891011
12131415161718
19202122232425
262728293031  
  1. 谢博,您好。阅读了您的博客文章非常受启发!这个基于k-mer数据库的过滤框架,其核心是一个“污染源数据库”和一个“基于覆盖度的决策引擎”。这意味着它的应用远不止于去除宿主reads。 我们可以轻松地将它扩展到其他场景: 例如去除PhiX测序对照:建一个PhiX的k-mer库,可以快速剔除Illumina测序中常见的对照序列。 例如去除常见实验室污染物:比如大肠杆菌、酵母等,建一个联合的污染物k-mer库,可以有效提升样本的纯净度。 例如还可以靶向序列富集:反过来想,如果我们建立一个目标物种(比如某种病原体)的k-mer库,然后用这个算法去“保留”而不是“去除”匹配的reads,这不就实现了一个超快速的靶向序列富集工具吗? 这中基于kmer算法的通用性和扩展性可能会是它的亮点之一。感谢博主提供了这样一个优秀的思想原型

  2. WOW, display an image on a char only console this is really cool, I like this post because so much…

  3. 确实少有, 这么高质量的内容。谢谢作者。;-) 我很乐意阅读 你的这个技术博客网站。关于旅行者上的金唱片对外星朋友的美好愿望,和那个时代科技条件限制下人们做出的努力,激励人心。