估计阅读时长: 13 分钟LCA算法是现代宏基因组学分析的核心技术之一,主要用于解决序列比对结果的分类不确定性问题。例如,我们在处理宏基因组测序reads的物种来源分类注释工作的时候,经常会思考一个问题:在宏基因组分析中,一个测序read通常与多个参考序列产生比对结果,这些结果可能指向不同的分类单元。那这条reads最可能的物种分类来源位置是怎样的,怎样可以通过一个算法,基于一系列的物种匹配结果来推断出一个合适的物种来源,既避免过度分类,又保证分类的准确性。 Order by Date Name Attachments family-tree-animal-kingdom • 99 kB • 2 click 2025年12月2日LCA • 245 […]
Recent Posts
Archives
- December 2025 (1)
- November 2025 (2)
- October 2025 (1)
- August 2025 (3)
- July 2025 (2)
- June 2025 (6)
- May 2025 (3)
- November 2023 (1)
- June 2023 (2)
- May 2023 (2)
- April 2023 (2)
- March 2023 (2)
- February 2023 (1)
- August 2022 (2)
- July 2022 (2)
- June 2022 (5)
- May 2022 (5)
- April 2022 (4)
- March 2022 (3)
- January 2022 (2)
- December 2021 (2)
- November 2021 (2)
- October 2021 (6)
- September 2021 (8)
- August 2021 (8)
- July 2021 (6)
- June 2021 (20)
- May 2021 (10)
博客文章
| S | M | T | W | T | F | S |
|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | |
| 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 |
| 28 | 29 | 30 | 31 | |||
Tags
algorithm (33)
bilibili (3)
binary tree (3)
Chromatography (3)
clustering (19)
contour (3)
Darwinism (4)
dataframe (3)
data visualization (23)
dotnet-core (25)
GCModeller (19)
gdi+ (22)
ggplot (14)
graph (14)
heatmap (5)
html (3)
http (4)
image processing (7)
kegg (5)
kmeans (3)
language (7)
linq (3)
linux (8)
machine learning (4)
mass spectrometry (12)
math (19)
MSI (4)
mzkit (19)
network (8)
pathway (4)
pipeline (4)
query (5)
R# (44)
rsharp (23)
scripting (14)
single-cell (6)
sql (3)
symbolic computation (3)
text processing (4)
typescript (3)
ubuntu (4)
uniprot (3)
vb (19)
VisualBasic (50)
webassembly (3)

Hello blogger, thank you for sharing this post! We process a large number of metagenomic samples, and every time we…
谢博,您好。阅读了您的博客文章非常受启发!这个基于k-mer数据库的过滤框架,其核心是一个“污染源数据库”和一个“基于覆盖度的决策引擎”。这意味着它的应用远不止于去除宿主reads。 我们可以轻松地将它扩展到其他场景: 例如去除PhiX测序对照:建一个PhiX的k-mer库,可以快速剔除Illumina测序中常见的对照序列。 例如去除常见实验室污染物:比如大肠杆菌、酵母等,建一个联合的污染物k-mer库,可以有效提升样本的纯净度。 例如还可以靶向序列富集:反过来想,如果我们建立一个目标物种(比如某种病原体)的k-mer库,然后用这个算法去“保留”而不是“去除”匹配的reads,这不就实现了一个超快速的靶向序列富集工具吗? 这中基于kmer算法的通用性和扩展性可能会是它的亮点之一。感谢博主提供了这样一个优秀的思想原型
It’s laborious to find knowledgeable people on this topic, however you sound like you realize what you’re speaking about! Thanks
WOW, display an image on a char only console this is really cool, I like this post because so much…
确实少有, 这么高质量的内容。谢谢作者。;-) 我很乐意阅读 你的这个技术博客网站。关于旅行者上的金唱片对外星朋友的美好愿望,和那个时代科技条件限制下人们做出的努力,激励人心。